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Abstract

An intuitive explanation of the connection between the quantum statistics of par-
ticles and their spins has been sought since the early proofs of the spin-statistics
theorem were published in the 1940’s. Recently Berry and Robbins [8] have sug-
gested a new approach. They construct a position-dependent spin basis in which
exchanging the positions of identical particles automatically exchanges their spins.
In this basis the spin-statistics connection can be derived from the singlevaluedness
of the wavefunction. The position-dependent basis for n particles is constructed
using the Schwinger representation of spin which can be regarded as a choice of
representation of the group SU(2n).

In this thesis we generalise the construction to include all representations of
SU(2n). For n = 2 vectors that can be used to construct the position-dependent
basis are assembled directly using Young tableau and the sign of these vectors under
the exchange of the two particles determined. We find that for a typical represen-
tations of SU(4) there are several subspaces of vectors with different spins that can
be used to construct the position-dependent basis. The sign of vectors in these sub-
spaces under the exchange of the particles is determined not only by the spin but
also by the symmetry conditions recorded in the Young tableau which labels the
representation of SU(4).

For n particles the decomposition into subspaces that can be used in the con-
struction is achieved using the characters of the relevant groups. We see that typi-
cal representations admit parastatistics. The number of subspaces of spin s which
transform according to a given irreducible representation of S, is written in terms

of Littlewood-Richardson and Clebsch-Gordan coefficients.
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Chapter 1

Spin-Statistics (and all that)

The spin-statistics theorem is a major milestone in the development of quantum
mechanics. Its discovery provided an explanation of the Pauli Exclusion Principle
which had successfully predicted both the structure of the periodic table and the
spectra of atoms. As the Exclusion Principle profoundly changed our view of the
world it can be difficult to appreciate how radical the ideas of Pauli and Dirac were
in their day. In fact the interest in and controversy around the spin-statistics theo-
rem has never really disappeared since its inception. In this chapter we will follow
the development of our current understanding of spin-statistics and the recent at-
tempts to find examples of the violation of the spin-statistics theorem. All this is
the physical background to the constructions of non-relativistic spin statistics that

will be made in the subsequent chapters.

1.1 The discovery of spin-statistics

The most complete history of the spin-statistics theorem is the book of Duck and
Sudarshan [17]. Their treatment reproduces the significant papers along with com-
ments and explanations and is also an enjoyable read. If I can recommend my version
it is only that I will be briefer but anyone with an interest in the spin-statistics the-

orem will benefit from reading their account.
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1.1.1 Pauli’s exclusion principle

It is the Pauli exclusion principle, a consequence as we will see of the spin-statistics
theorem, that was first used to explain the structure of the periodic table and pro-
vided a stepping stone in the discovery of the spin of the electron. Stoner realised
that by adding an extra “spin” quantum number to label electron states he could
explain the 2,8, 18 family structure of the periodic table. This inspired Pauli [44] to

produce his statement of the Exclusion Principle,

There can never be two or more equivalent electrons in an atom. These
are defined to be electrons for which the value of all quantum numbers
is the same. If, in the atom, one electron occurs which has quantum

numbers with these specific values, then the state is occupied.

Pauli anticipated a “deeper foundation” for his exclusion principle which would re-
quire a better understanding of quantum theory. He continued to pursue these ideas
during his research leading eventually to the canonical relativistic argument for the

spin-statistics theorem that we have today.

As a consequence of the spin-statistics theorem it is still Pauli’s exclusion prin-
ciple that has the most significant and far reaching implications. Quite literally
without this seemingly arbitrary rule for electrons the world as we know it would
not exist. The importance of the exclusion principle may explain the calibre of
physicists from Heisenberg, Dirac and Fermi to Feynman that contributed to the
development of spin-statistics. It certainly explains why Pauli was later awarded

the Nobel Prize for his insight.

1.1.2 Spin and statistics

During the discovery of the exclusion principle the additional quantum number at-
tributed to the electron had no physical interpretation. Goudsmit and Uhlenbeck
[62] first proposed that this quantum number be assigned to an “eigen-rotation of
the electron”. They realised that a spherical rotating hollow sphere of charge would

have the required gyro-magnetic ratio for spin. The difficulty with this view, that
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the surface velocity would be greater than the speed of light, was solved later when
Dirac introduced the point electron realising the spin as a purely intrinsic property
of elementary particles. The electron spin was immediately applied to explain the

level splitting in atomic spectra.

With the discovery of spin we have one half of spin-statistics. The statistics
we refer to is the statistical mechanics of a gas of identical elementary particles.
Initially it was Bose [11] who derived the probability distribution of a photon gas
by dividing phase space into cells of volume h3, where h is Planck’s constant. Any
number of quanta are assigned to the states of the gas. After corresponding with
Bose, Einstein was inspired to extend the ideas to an ideal gas of identical molecules.

The Bose-Einstein probability distribution they derive is

1

where
B=1/kT

and p is the chemical potential of the gas. N, is the average occupation number
of the state r which has energy FE,. From this probability distribution both the
energy spectrum and thermodynamic properties of the gas are then calculated. In
the series of papers, [18] [19] [20], the phenomenon of Bose-Einstein condensation

was also discovered.

Independently both Fermi [21] and Dirac [15] solved the statistical mechanics of
an ideal gas of identical particles which obey the Pauli exclusion principle. Each
state is now either occupied by a single particle or is unoccupied. The Fermi-Dirac

probability distribution is

1

NT - eﬂ(Er_N) —+ 1

(1.2)

Again the probability distribution allows the energy spectrum and thermodynamic

properties of the gas to be calculated.
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The properties of these two ideal gases are clearly very different. At low temper-
atures a Fermi-Dirac gas fills up all the lowest energy states while a Bose-Einstein
gas condenses as the majority of the particles enter the ground state with zero en-
ergy and zero momentum. With an understanding of particle spin and statistics we

are in a position to state the spin statistics theorem.

Bosons, particles with Bose-Einstein statistics, all have integer spin while

all fermions have half integer spin.

At the time this was a remarkable experimental fact. There are two classes of parti-
cles, those that obey or do not obey the Pauli exclusion principle. These two classes
possess very different properties. However the membership of the classes is decided

by a quantum number, spin, which seems totally unrelated.

1.1.3 The symmetrisation postulate

The symmetrisation postulate was discovered independently by both Dirac [15] and

Heisenberg [35] in 1926.

States containing several identical elementary particles are either sym-
metric or antisymmetric under permutations of the particles according
to the particle species. Bosons are symmetric and fermions are antisym-
metric. States which cannot be represented by wave functions with the

required symmetry are forbidden.

We will summarise Dirac’s argument which appears in the same paper in which he
derives the properties of an ideal Fermi-Dirac gas. His paradigm is a system of two
electrons orbiting an atom. (mn) denotes the state in which one electron is in the
orbit labelled by m and the other in the orbit n. He then asks the question: are

(mn) and (nm) two different states?

His argument proceeds as follows. The states (mn) and (nm) are physically
indistinguishable. If both states correspond to separate rows or columns in the

matrices which operate on the system then the amplitude for the two transitions
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(mn) — (m/n') and (nm) — (n'm’) can be individually calculated. They would cor-
respond to two different matrix elements. However as the transitions are physically
indistinguishable only the combined intensity should be able to be determined by
experiment. So if the theory is to enable only observable quantities to be calculated,
(mn) and (nm) must count as a single state (we will see later that this may not

necessarily be the case).

Taking the states (mn) and (nm) to be physically indistinguishable has conse-
quences. Only operators that are symmetric in the positions and momenta of the

two electrons can be represented by a matrices, as for an operator A
A(zy,z2)(mn) = Az, z2)(nm) = A(z2,z1)(mn) (1.3)

However it is possible to represent the physical properties of the system using ma-

trices which depend symmetrically on the electrons coordinates.

Turning to the eigenfunctions for the two-electron system and neglecting the
interaction between the electrons, the eigenfunction for the state (mn) can be con-
structed from a product of single electron eigenfunctions, ,,(1)1,(2). There is,
however, a second eigenfunction ,,(2), (1) which also corresponds to the same
state and two independent eigenfunctions would give rise to two rows and columns

in the matrices. What is required is a set of eigenfunctions 1, of the form

Ymn = amn"/}m(l)wn(Q) + bmn"/}m(2)"/}n(1) (1-4)

where the coefficients a,,, and by, are constants. The set should contain only one
Ymn corresponding to the states (mn) and (nm), so applying a permutation p of the

electrons to the eigenfunction,

P Ymn = CPmn (1.5)

where c is a phase factor. This set of eigenfunctions must be sufficient to obtain a

matrix representation of any operator symmetric in the coordinates, so that

A";bmn = Z Amnm’n’ Q;bm’n’ (16)

m/n’
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where 1,1, is also in the given set of eigenfunctions.

Dirac finds that there are only two solutions, either @, = bpp OF Gmp = —bmn-
Either set of eigenfunctions gives a complete solution of the problem and this choice
cannot be determined from the quantum theory. The result extends to any number
of electrons, the sets of eigenfunctions are then either symmetric or antisymmetric
under permutations of the electrons. As an antisymmetric eigenfunction vanishes for
two electrons in the same orbit there can be no more than a single electron in each

orbit and we see that the symmetrisation postulate predicts the exclusion principle.

Dirac’s argument insists that all states of identical particles be either symmetric
or antisymmetric. Later we will be considering parastatistics in which the states of
identical particles are allowed not to be entirely symmetric or antisymmetric. As
these violate Dirac’s result so we should be clear about the essential requirements
of his argument. The first condition was that those states corresponding to per-
mutations of the electrons should be physically indistinguishable. This is a strong
condition on the states but on its own it is insufficient to deduce the result. The
argument also requires the assumption that indistinguishable states are represented
by a single vector, up to a phase factor. This was introduced in order to require

there to be a single eigenfunction ,,, corresponding to both states.

Messiah and Greenberg [43] considered the situation where only the indistin-
guishability condition applies to states. Firstly they find that all physical operators

A on the states must be permutation invariant
. Al =0 (L7)

As the Hamiltonian operator is an observable it also commutes with permutations.
Consequently evolving A for a time ¢ we obtain UT(¢)AU(t) which is also permu-
tation invariant if A is. They then show that for any vectors in a subspace which
transforms according to an irreducible representation of the permutation group the
expectation value of UT(¢)AU(t) is independent of the particular choice of vector.

This is interesting as for more than two particles there are irreducible representa-
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tions of the permutation group with a dimension of two or more. In this subspace
it is then possible to choose two different vectors to represent a state. The choice of

vector can’t be determined by physical observations.

In the language of Dirac if we considered a three electron state of an atom (Imn)

then a wavefunction can be written as a linear combination of all the permutations

p of the function (1)1, (2)1n(3),

Vin = D € Pr(p(1) P (0(2)) 9 (p(3)) (1.8)
p
If the constants c¢j are chosen such that for a permutation o

T Pn = T(0) ga Vprn (1.9)

where T'(0) is an irreducible representation of S3, then ¢ = transforms according to
the irreducible representation 7'. This is a generalisation of equation (1.5). In that
equation we assumed there could only be a single vector to represent the electron
state. If we have selected constants ¢ so that 1" is the two dimensional irreducible
representation of S3 then the expectation values of an observable for all ¢/ =~ in the
two-dimensional subspace will be equal. The indistinguishability of the electrons
forces us to choose vectors which belong to irreducible representations of the per-

mutation group but there could still be more than one vector for a given (Imn) in

this subspace.

1.2 Relativistic quantum field theory

Quantum field theory was conceived by Dirac [16]. He worked from the canonical
commutation relations to define particle creation and annihilation operators. These
operators add or remove quanta from states which can be multiply occupied and
so the theory is therefore a field theory of bosons. In order to define a field theory
for fermions Jordan and Wigner [39] replaced the commutation relations for the
creation and annihilation operators with anticommutation relations. Using these

operators they define antisymmetric states and wavefunctions which obey the Pauli
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exclusion principle. So in field theory the spin-statistics relation becomes a connec-
tion between the choice of commutators or anticommutators for the creation and
annihilation operators of the field and the spin of the particles represented by the
field.

1.2.1 Pauli’s proofs

While the original field theories were non-relativistic, by quantising the Klein-
Gordon equation Pauli and Weisskopf [46] produced the canonical relativistic quan-
tum field theory. Pauli then used this relativistic quantum field theory to attempt
his first proof of the spin-statistics theorem. The idea was to show that the relation
between spin and statistics is a necessary consequence of the postulates of relativistic
quantum field theory. In this respect all the field theory proofs are alike although

they differ depending on the precise axioms of the field theory used.

Pauli’s first proof was not conclusive. He himself questioned the validity of sev-
eral of the operations he used and it was some years before he reached what is now
regarded as his orthodox proof of the spin-statistics relation. While Pauli began his
work on the spin-statistics relation Iwanenko and Socolow [38] quantised the Dirac
equation using anticommuting creation and annihilation operators. They concluded
that attempting to apply Bose statistics to the Dirac equation inevitably produces
problems and so Bose statistics are most natural for the scalar relativistic equation

while Fermi statistics are natural for Dirac’s relativistic equation.

Before discussing Pauli’s second proof we should note some of the significant
ideas contributed by less recognised authors. Fierz [25] introduced the notion of
representing elementary particles with irreducible relativistic spinors which Pauli
would later generalise. Belinfante’s unique approach [7] was to require invariance
under the charge-conjugation transformation. This was not only novel but, interest-
ingly, the argument is now used in reverse, the proof of the spin-statistics theorem
being the foundation for the proof of the PCT theorem. DeWet [14] also produced

a proof based on canonical field theory in which he was the first to identify one of
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the crucial assumptions on which many proofs from relativistic field theory depend,

[p(x), ¢ (y)]y >0 for (x — y) spacelike

where ¢ is a field operator. It would be fifteen years before this was proved.

That Pauli’s name is so strongly linked to the spin-statistics theorem is due to his
1940 proof [45] based on a classification of the spinor representations of the proper
Lorentz group. Although the proof relies on field theory we can see the origin of the
spin-statistics connection in the representations of the spinors. The proper Lorentz
group is the continuous group of linear transformations which leaves invariant the

scalar product
3
Zxkxk = 2% + 25 + 25 — 22 (1.10)
k=0

Pauli uses the spinor representations of the Lorentz group. A basic spinor is defined

from a four-vector v by the relation
U = ootP (1.11)

o, are the Pauli matrices with o defined to be the identity matrix. The group
multiplication law is then the normal matrix multiplication for the spinor matrices.

The inverse relation to return a four-vector from a spinor is given by

1

po_ _ 2 m o
ot = 2aaﬂ-U (1.12)
Spinor indices are raised and lowered with the alternating tensor ¢*’ = —¢®® with
€2 = €19 = 1 etc. A general spinor Uoﬁ‘;z can be characterised by two “angular

momentum quantum numbers” (j, k) where there are 2j upper dotted indices and

2k lower indices.

Pauli divides the representations into classes depending on their properties when
the representation is restricted to the subgroup of space rotations. If we take a rep-
resentation U (j, k) where j + k is half integral, then applying a space rotation by 27

vectors in the representation space undergo a sign change. In a representation where
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j +k is integral vectors in the representation space don’t change sign under a 27 ro-
tation. Pauli refers to these representations as single- or double-valued. The spinor
representations U which transform as double-valued representations of the Lorentz
group correspond to particles with half-integral spin, while the single-valued repre-

sentations correspond to those with integral spin.

The single-valued representations are further classified into representations where
4 and k are both integral, U™T, and those where both j and k are half integral, U .
The direct product of two representations decomposes into a sum of irreducible
representations in a particular class,
vtut =U" U U =U"
(1.13)
UtU- =U"U"=U"
For the double valued representations U*1¢ refers to representations where j is in-
tegral and k£ half integral and U~° to j half integral k integral. The multiplication
table for these representations is
Utsyte =yt UrsUTe =U~—
(1.14)
Utey+ — e Utey- — [Fe
Pauli considers both commutation and anticommutation relations for the four
classes of spinor fields. In either case he postulates the brackets of the field operators
can be expressed in terms of an invariant D-function and the derivatives of that

function,
[U(x),U(x")]+ ~ D(x —x') (1.15)

where & on the bracket refers to anticommutation or commutation relations respec-

tively and U is the complex conjugate of U. The D-function is given by

dp - -sinwxg
D(x) = / e (1.16)

Z is the normal three vector position and similarly p is the momentum. The D-

function is uniquely determined by the conditions,

(O-m?)D=0  D(&0)=0  9yD|gy=0 = 6(Z) (1.17)

10



1.2. Relativistic quantum field theory

Using the rules for multiplying the spinor representations, one can find conditions on
the brackets. For half-integral spins with either commutation or anticommutation

relations
[U%, Ty = U, UF], =U" (1.18)

To construct a spinor in U~ from D and its derivatives only the odd derivatives of

D can appear. For integral spins the brackets must have the opposite form
U, 0%, = [U%,U%], =U* (1.19)

These brackets correspond to only even derivatives of D. Pauli then symmetrises
these relations for permutations of the positions, x <> x'.

+ +

X =[Urx),U ()]s +[UF), U (x)]+ (1.20)

X is therefore even under x <> x’. He shows that the odd derivatives of the D-
function are even under a permutation of the positions, ¥ <+ #' but odd under
zo < z. Consequently for integral spins the X vanishes under symmetrisation.
This excludes the possibility of anticommutation relations for integral spin particles
because at z = z’ the expression for X would be positive and could therefore only

vanish for fields which are identically zero.

For half integral spins the derivatives of the D-function are even under the per-
mutation x <> x’. To rule out commutation relations Pauli uses an argument due to
Fierz that the energy of the system is only positive when anticommutation relations
are chosen. In this way he establishes the connection between spin and particle
statistics without it being necessary to fix the particular spin of the particles in
question. There are still problems with the proof; as with all proofs of the time
the manipulations of the field are not shown to be valid and interactions are not
included. However it was a great advance and also includes a discussion of symmetry
conditions which anticipated the PCT theorem but which I have omitted from this

outline.

The aspect of Pauli’s proof of most interest in this thesis is his use of double-

valued representations. When we discuss the construction of Berry and Robbins in
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Chapter 1. Spin-Statistics (and all that)

Chapter 3 we will also encounter double-valued representations where, under restric-
tion to a subgroup of permutations, vectors of half-integral spin change sign. The
group used is however not the Lorentz group but the group of special unitary matri-
ces. The analogy is very weak but at least in a historical context it is an interesting

connection between the two approaches.

1.2.2 Axiomatic proofs

While Pauli is widely credited with the derivation of the spin-statistics theorem the
most complete proofs are due to Liiders, Zumino [51] and Burgoyne [13]. The most
memorable reference for a proof of the spin-statistics theorem is however the book of
Streater and Wightman [50]. Their proof also follows the axiomatic approach which

Liiders, Zumino and Burgoyne introduced.

Before these axiomatic proofs were developed there were two other contributions
to the history of the spin-statistics theorem that should be noted. In 1949 Feynman
[23] published a paper purporting to show that only the observed spin-statistics con-
nection was compatible with calculations of the vacuum survival probability made
using the Feynman rules. The approach was very novel but an analysis by Pauli
showed the theory required an indefinite metric on the Hilbert space while a basic
postulate of the field theory is that the metric is positive definite. Undeterred this
served as a basis for Feynman’s ideas for an elementary proof. Schwinger [49] pub-
lished a proof based on the requirement that relativistic quantum field theory be
time reversal invariant. In the later proof of Liiders and Zumino and also in Streater
and Wightman’s book this is reversed so that both the spin-statistics theorem and

PCT theorem rest on the basic axioms of relativistic field theory.

In their book Streater and Wightman follow the proof of Burgoyne. The work of
Liiders and Zumino applies only to spin 0 and 1/2 although it has the advantage of
clearly separating the PCT and spin-statistics theorems. Both Liiders and Zumino
and Streater and Wightman make use of the Hall-Wightman theorem. As this

theorem is often used in proofs of the spin-statistics connection using relativistic

12



1.2. Relativistic quantum field theory

quantum field theory I will state it here.

Theorem: Hall-Wightman 1.2.1. The vacuum expectation value of the product
of two fields

(Ol¢(x)$(x)|0) = F(x — x))
is analytic in (x — x') and continuable to all separations.

In Streater and Wightman the discussion of such results extends over most of a
chapter, including it here is only designed to give a flavour of the problems to be

tackled in order to produce rigorous proofs.

As well as having a full understanding of the allowed manipulations of field oper-
ators the other essential building block of these proofs are the axioms of relativistic
quantum field theory. The mathematical discussion of Streater and Wightman is
too involved for an introduction so instead I will refer to the original postulates of

Burgoyne.
1. The field theory must be relativistically invariant.

2. The theory contains no negative energy states. (This is equivalent to requiring

the vacuum state to be the lowest energy state.)
3. The metric in Hilbert space is positive definite.

4. Distinct fields either commute or anticommute for space-like separations.

‘

He then shows that for any field with these properties the “wrong” connection be-
tween spin and statistics implies that the field vanishes. For readers with some

knowledge of field theory the proof is structured as follows;

From field operators ®,(x), which transform according to an irreducible repre-
sentation of the homogeneous Lorentz group indexed by p, we define tempered field

operators
o(f) = [ dtap (), () (1.21)
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where the f#(x) are a set of test functions. F' and G are defined to be the vacuum

expectation values

Fa(€) = (0]2,(x)@(x')[0) (1.22)

Gur(€) = (0], (x)2x(x)[0) (1.23)

with € the relative position (x — x’). F and G can be extended to functions of
a complex four vector z = € — in which are analytic for z> = 2/ z; in the complex
plane cut along the positive real axis. Burgoyne shows that for space like separations

£ <0,
Gun(=8) = (-1)*Gun(8) (1.24)

where s is the particle spin. The “wrong” sign commutation relations for the field

operators at space-like separations are
(0], ()P (x) + (—1)2F (x),(x)[0) = 0 (1.25)

We have used the fourth axiom of the field theory that the fields commute or anti-

commute for space-like separations. Equation (1.25) implies that

Fun(€) + (1) Gru(-€) =0 (1.26)

Using (1.24) we see that

Fuxn(€) + Gau(§) =0 (1.27)

By analyticity Fj,) + G, vanishes everywhere in the cut § plane. To evaluate the

limit & — 0 the tempered fields are used. From equation (1.26)
(O[2(f)®(f) + 2(9)®(9)|0) =0 (1.28)
As the Hilbert space metric is positive definite we conclude that
[2(£)I0)]* + [@(g)[0)* =0 (1.29)

Consequently the tempered field operators ®(f) and ®(g) are identically zero for all

43

test functions f and g. The field is therefore zero and the “wrong” commutation
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1.3. Feynman and the elementary proofs

relations are untenable.

The canonical proof of the spin statistics theorem given by Streater and Wight-
man is a combination of the proof of Burgoyne with the spinor proof of Pauli, the
spinors being used to prove the equivalent of statement (1.24). It has the advantage
over the Pauli proof of being rigorous with theorems for all the necessary manipula-
tions of the field operators also proved. It is probably for this reason that amongst

such a wide range of approaches it has achieved the status of the definitive proof.

1.2.3 Criticisms of the field theory proofs

In the outlines of the proofs of the spin-statistics theorem from relativistic quantum
field theory I hope I have been fair both to their achievements and to the degree of
the formalism that they necessarily introduce. The axiomatic approach of Streater
and Wightman can appear to reduce the spin-statistics relation to a mathemati-
cal problem involving the existence of an analytic continuation of certain tempered
distributions in convex cones of four-dimensional space time. If there is a physical
result obscured by this analysis the best candidate is the connection between spin
and the double- or single-valued representations of the proper Lorentz group. This
is not however used in all the proofs so it is hard to see it as a physical basis for
the spin-statistics connection. If from these relativistic arguments we were to try
and explain the spin-statistics theorem what we can say is that another connection
between spin and statistics is incompatible with the axioms of relativistic quantum

field theory and we must be satisfied with that.

1.3 Feynman and the elementary proofs

In Feynman'’s lectures on physics [22] he discusses the spin-statistics connection and

asks the following question:

“Why is it that particles with half-integral spin are Fermi particles

whereas particles with integral spin are Bose particles? We apologise
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for the fact that we cannot give you an elementary explanation. An ex-
planation has been worked out by Pauli from complicated arguments of
quantum field theory and relativity. He has shown that the two must
necessarily go together, but we have not been able to find a way of re-
producing his arguments on an elementary level. It appears to be one of
the few places in physics where there is a rule which can be stated very
simply, but for which no one has found a simple and easy explanation.
This probably means that we do not have a complete understanding of

the fundamental principle involved.”

This question has inspired several attempts to formulate such an elementary argu-
ment and it is in this spirit that Michael Berry and Jonathan Robbins proposed
their non-relativistic construction of the spin-statistics connection with which the
rest of this thesis is concerned. Here we will review other approaches that have been
taken to the question. The main critiques of these proposals have been provided by

Hilborn [36] and Sudarshan and Duck [17].

1.3.1 Geometric rotation

Probably the most well known of the “elementary” schemes are the geometric ar-
guments of Bacry [4] and Broyles [12]. The simple situation described by Bacry is
sufficient to demonstrate the essential idea. Unfortunately both arguments contain

the same critical flaw.

Bacry considers the two electron system where one electron is located at coordi-
nates (z,y,2) = (a,0,0) with spin +1/2 and the second electron at (—a,0,0) with

spin —1/2. The single particle wavefunctions are

i = d(z — a)d(y)d(z) s = 0 (1.30)
0 0(z 4 a)d(y)(2)

and the two electron wavefunction is written
Vap(1,2) = 9a(1)yp(2) £ 4a(2)yp(1) (1.31)
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We have not as yet chosen whether the wavefunction for the system will be symmetric

or antisymmetric. Exchanging the two particles
Vap(2,1) = £V 4p(1,2) (1.32)

A rotation by 7 about the y axis leaves the two electron state unchanged.
V4
y

M

!

If we act on the single electron wavefunctions with the rotation about the y axis

Ry(m) = e ™
Ry(m)Ys =B Ry(m)p = =94 (1.33)
So acting on the two electron wavefunction
Ry(m)¥ap(1,2) = — + ¥ap(1,2) (1.34)

Bacry then makes an error which invalidates the proof, the proof of Broyles also
fails for a similar reason. As the two electron state is invariant under the rotation

Ry(m) he requires the same of the wavefunction
Ry(m)WAp(1,2) = W 4p(1,2) (1.35)

If this were the case it would require the wavefunction to be antisymmetric which is

the spin-statistics relation.

Unfortunately the invariance of the state under a discrete symmetry transfor-
mation does not rule out the possibility of a sign change in the wavefunction. An
example of the phenomena is a 27 rotation of a spin-1/2 state of an electron. The
state is invariant but the wavefunction changes sign. As the sign of ¥4 p(1,2) un-
der the rotation R, (7) cannot be determined the argument fails to provide a spin

statistics connection.
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1.3.2 Feynman’s Dirac lecture

In 1986 Feynman, despite his long illness, gave the Dirac memorial lecture in which
he sketched an elementary argument for the spin-statistics connection [24]. He was
inspired by the unexpected behaviour of tethered classical objects under rotations.
The lecture demonstration was rotating a full wine glass through 47 with out spilling
the water. The same idea is contained in a trick with a belt which is easier to de-
scribe. If a belt is fixed at one end while the other end is connected to an object
rotating the object by 27 introduces a twist to the belt which cannot be undone by
translating the object. However the twists in the belt that result from rotating the
object by 47 can be removed by translating the object whilst keeping its orientation
fixed. Figure 1.1 shows a schematic of the belt trick though it is best verified person-
ally. In the figure a straight belt is rotated through 27 then 47. Finally keeping the
orientation of the black cube fixed whilst translating along the path shown removes

the twists in the belt.

-?g-

Figure 1.1: The First Belt Trick

This classical paradox suggests that a rotation by 27 does not always return an
object to its original state and therefore that the change in sign of the wavefunction

of spin-1/2 particles is not unreasonable. In their discussion of these ideas Sudar-
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shan and Duck warn the unwary not to be deceived by such party tricks. In their
words they are “pure old fashioned snake-oil peddling”. However they concede that

in Feynman’s hands they were mesmerising.

With this model Feynman also included two others in which the exchange of
identical particles reproduces the spin-statistics connection. One model uses a pair
of composite particles each consisting of a spin zero electric charge e and a spin
zero magnetic monopole of charge g. However as an explanation of spin-statistics
requiring elementary particles to have the additional unphysical property of sourcing

a magnetic field is not compelling.

The third model makes use of a second belt trick, see figure 1.2. In the trick
when two particles connected by a ribbon are exchanged the ribbon acquires a twist.
To complete the exchange one of the particles must be rotated by 27. The argu-
ment is used to demonstrate that the operation of exchange entails a hidden rotation
by 27. Feynman uses this rotation to determine the effect of exchange on particle
states from which he acquires the spin-statistics relation. The reasonable objection
raised by Duck and Sudarshan is that we are required to postulate that elementary
particles are connected by ribbons a property which is needed for no other purpose.
While the classical argument suggests a spin-statistics like result a derivation of the

spin-statistics theorem should be based on more natural physical properties.

In his lecture Feynman also returned to his original field theory argument. He
used the time reversal property of the Dirac spinor to show that Fermi-Dirac statis-
tics are necessary if the S matrix is to be unitary. This use of the PCT theorem
to prove the spin-statistics theorem reverses the status of the theorems and requires
that the PCT theorem be proved without the use of a spin-statistics relation. In
their analysis of Feynman’s argument Sudarshan and Duck conclude that the in-
ternal consistency of the Feynman rules for perturbation theory is not a sufficient

foundation for the spin-statistics theorem.

Feynman’s comments on the second belt trick were inspired by a rigorous ge-
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—
2

A

Figure 1.2: The Second Belt Trick

-

ometric argument of Finkelstein and Rubinstein [26]. Finkelstein and Rubinstein
treat nonlinear field theories in which there exist modes of the field, called kinks
or solitons, which can not be deformed into each other and which posses a con-
served integer particle number. They define an exchange operation in which two
soliton antisoliton pairs are created, the solitons exchanged, and the new pairs anni-
hilated. The eigenvalues of the exchange operator are 1 corresponding to even or
odd statistics. This exchange operation is shown to be homotopic to a 27 rotation
of the field which implies solitons with half integer spin have odd statistics. Those
soliton species which can undergo odd exchanges also admit even exchanges. To fix
the statistics and so the spin of a given type of soliton they note that all solitons
of the same type must produce the same sign under exchange and the sign can not
change over time. Consequently given a universe of solitons measuring the exchange
sign for a pair fixes the exchange property of all solitons of that type for all time.

Parastatistics, which will be discussed later, is excluded in this model.

1.3.3 Recent candidates for an elementary proof

Balacharandran et al [6] (see also [5] for a brief account) have suggested a develop-
ment of the argument of Finkelstein and Rubinstein applied to point particles. Their

proof avoids reference to field theory or relativity. However the argument makes use
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of an infinite dimensional configuration space. The configuration space of a single
particle is R?® x F3(SO(3)) where SO(3) is the group of rotations and F? is the
set of all orthonormal frames with a fixed orientation in 3 dimensions, this deter-
mines the particles spin. Antiparticles are described by a state in R® x F3(S 0(3))
where the orthonormal frames in F° have the opposite orientation to the particle
frames. For states of many identical particles the configurations where spins and
positions have been exchanged are identified and pairs of particles are not allowed
to occupy the same position. The effect of particle antiparticle annihilation is in-
cluded by associating configurations where particles and antiparticles coincide with
the configuration space of reduced particle numbers. Assuming certain continuity
conditions on this configuration space they show that exchange for particles with
spin is homotopic to a 27 rotation of one of the particles which is the spin-statistics
connection. Establishing this homotopy makes use of the creation and annihilation
of particle antiparticle pairs. They suggest that the analogue of these arguments in

field theory will involve the physics of solitons although the question is not resolved.

Sudarshan and Duck in the final chapter of their book [17] include their own
elementary argument. They replace the postulates of relativistic quantum field
theory with conditions on the kinematic parts of the Lagrangian for the individual

fields. The Lagrangian must be

1. derived from a local Lorentz invariant field theory for fields which are each a

finite dimensional representation of the Lorentz group.
2. in the Hermitian field basis.
3. at most linear in the first derivatives of the fields.
4. at most bilinear in the fields.

They then show that the “wrong” spin-statistics connection is incompatible with

rotational invariance of the Lagrangian.

This proof also seems to fail to provide the sought after elementary physical

understanding of the spin-statistics connection that Feynman requested. In their
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discussion of their result Duck and Sudarshan say the simplification they introduce
is the use of rotation invariance rather than time reversal invariance in Schwinger’s
field theory proof. However the essential structure remains the same, they show
that only the observed spin-statistics connection is compatible with a given set of
requirements for the field as in the axiomatic proofs. Although they claim the proof

is non-relativistic the requirement that the field be Lorentz invariant is still retained.

In summary the search for an elementary proof of the spin-statistics connection
has produced many interesting and significant analogues of the spin-statistics con-
nection. Unfortunately none are conclusive. Some require additional unphysical
properties to be postulated for elementary particles while others remain refinements

of the relativistic argument.

1.4 Parastatistics

A good review of the theories which allow a violation of the spin-statistics connec-
tion is provided by Greenberg [31]. Here we will tackle only a couple of the topics
namely, Green’s parastatistics, which is the original example of parastatistics, and
the theory of quons, which has particular relevance to experimental attempts to look

for small violations in particle statistics.

1.4.1 Parabosons and Parafermions

Parastatistics, proposed by Green [30], is a theoretical generalisation of Bose and
Fermi statistics. Bose or Fermi statistics are defined by the choice of commutation
or anticommutation relations for the creation and annihilation operators of particle
states. The number operator for a state k can be written

1
ng = E[az’ak]i + const. (1.36)

where 4+ on the bracket refers to the choice of anticommutation relations and —

to commutation relations for the operators a. The operator a;[g creates a particle
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in the state k and aj is the corresponding annihilation operator. The bracket is
either a commutator or an anticommutator according to the type of statistics. The
commutator of the number operator and creation operators is independent of the

choice of Bose or Fermi statistics.
[k, a}]- = dpa) (1.37)

We can generalise the definition of the number operator to use the operators a;g and
a.m,n annihilating a particle in state m and creating one in state k. Then substituting
this number operator into equation (1.37) we find Green’s trilinear commutation

relations.
[[a}, am] e, i) = 26,a] (1.38)

Selecting the commutator or anticommutator in this relation will define two alter-
native cases of parabose or parafermi statistics. As these commutation rules are

trilinear the definition of the vacuum state
ag|0) =0 (1.39)

is insufficient to allow all states to be calculated. An additional condition on single-

particle states is included to resolve this
akaf|0) = p x|0) (1.40)

To find solutions of these commutation rules Green made the following ansatz.

Let

p P
af =36 g =Y b (1.41)

a=1 a=1
The parabose solutions are defined by taking the pair of operators b,(ca), b,(f ) to com-

mute if @ = # but anticommute if o # . The parafermi statistics are found by
swapping the use of commutation and anticommutation relations in the definition.
The ansatz provides a set of parabose and parafermi statistics for each integer p.
For parabosons p is the maximum number of particles which can occupy an antisym-
metric state, while for parafermions it is the maximum number of particles which

can occupy a symmetric state. These parastatistics were the first alternative to the
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observed statistics of Fermi-Dirac or Bose-Einstein to be defined.

The irreducible representations of the symmetric group are labelled by Young

tableau, discussed in greater detail in chapter 2.

We will see later that the tableau record symmetry conditions. Single particle states
are assigned to boxes in the tableau then a tensor product of n single particle states
is symmetrised with respect to the states in the same row then antisymmetrised with
respect to those in the same column. The parabose or parafermi systems transform
according to irreducible representations of the symmetric group labelled by tableau
with no more than p rows or columns respectively. These correspond to having at
most p particles in antisymmetric or symmetric states. There are other forms of
parastatistics in which all representations of the symmetric group are admissible.
States with the original Fermi statistics are represented by a tableau with a single
column, the state is purely antisymmetric. Equivalently Boson states are repre-
sented by tableau with a single row where the state is completely symmetric. We
see now that the definitions of parabosons and parafermions are particular examples
of operators whose states transform according to more complex representations of
the symmetric group. The term parastatistics is used to cover all systems in which

particle states transform according to these generalised symmetry conditions.

1.4.2 Quons

In most experiments which look for a violation of the spin-statistics theorem the
assumption is that the expected statistics will be violated by a small amount. To
compare these experiments to a theory requires a model in which the statistics can
vary with a small parameter g. Bounds on the size of ¢ then give a quantitative
measure of the accuracy of the spin-statistics theorem. To date the best theoretical

framework for such a violation of particle statistics is the quon.
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The quon algebra is defined by taking the convex sum of the Bose and Fermi

algebras.

I+gq
2

I—gq

5 lar, af]+ = Ok (1.42)

[aka a}.]* +

q is in the range —1 < ¢ < 1. The usual vacuum condition
a|0) =0 (1.43)

is sufficient to calculate matrix elements of polynomials in the creation and anni-
hilation operators. At ¢ = 1 the statistics are bosonic while at ¢ = —1 they are
fermionic. Given the discrete representations of the symmetric group we should
be clear about the sense in which ¢ interpolates between these statistics. Vectors
formed by polynomials in the creation operators acting on the vacuum are super-
positions of vectors in different irreducible representations of the symmetric group.
As we vary ¢ the weight given to vectors in these irreducible representations varies
smoothly. For example as ¢ — 1 the weights of all representations tend to zero with

the exception of the symmetric representation leaving a completely symmetric state.

The quon theory possesses many of the desired properties for a theory which
allows small violations of spin statistics. The norms are positive, cluster decom-
position theorems and the PCT theorem hold and free fields can have relativistic
kinematics. It is not however ideal as observables with space-like separations don’t
commute and as a consequence interacting relativistic field theory may not be pos-

sible.

1.5 Experimental tests

To conclude this introduction to the spin-statistics theorem we will consider the cur-
rent experimental evidence for the symmetrisation postulate. Gillaspy [28] provided

a review of the literature from which most of our data will be taken.
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Currently there are no examples of particle behaviour which violate the sym-
metrisation postulate. If in fact such data were to be seen, for example an inhibited
transition in a collider experiment, it is unlikely it could be attributed to such a
violation. The frequency of such violations would be so low that the possibility of
an error in the experiment or detectors would prevent our gedanken investigator
publishing. Instead experiments to test the symmetrisation postulate yield upper
bounds on the probability 42 of finding a two particle state with unusual statistics.

In terms of the quon model of particle statistics

1+ ¢ for fermions
6% = 4 (1.44)
1 —g¢q for bosons
The limits put on $% by experiments vary widely. Gillaspy attributes this to the

trade-off between the chance of the experiment observing a violation and the size of

the violation that it is capable of detecting.

Before discussing particular types of experiments we should mention some of the
general problems encountered when attempting to verify such a fundamental law
of physics. As elementary matter particles are fermions few experiments in to the
symmetrisation postulate are carried out on bosons. There are however approxi-
mate results which suggest that the scale of a violation in the two classes should
be comparable. Using the indistinguishability of identical particles it can be shown
that it is not possible for a particle in an ordinary state to transfer to a state vi-
olating the symmetrisation postulate. This important superselection rule prevents
many symmetry violating transitions. For example we might assume that if there
were a small violation of the symmetrisation postulate then electrons in a block of
matter would slowly relax into the ground state, emitting photons in the process.
This transfer is inhibited by the indistinguishability of electrons and so the absence

of such transitions does not provide a test of the symmetrisation postulate.

We can now consider some of those schemes that have been used to provide
bounds on 3°.

Absorbing blocks: Fresh electrons which could be in a symmetry violating state
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are absorbed by the block. They are able to bind to an excited state of the
atoms and might then decay to the ground state emitting a photon. The most

precise experiment of this type was conducted by Ramberg and Shaw yielding

ﬁ2 S 10726.

Decaying blocks: A nuclear reaction in the block ejects a fresh particle from the
block. Associated with the ejected particle is another that could have anoma-
lous symmetry and decay to the ground state. The most precise data for an

experiment of this type provides a limit of 8% < 10757,

Collisions in vacuum: Individual particles are projected into atoms in a vacuum.
The separate results can then be analysed. As there are few events the system

is less sensitive but hopefully more accurate. 32 < 107'3,

Ground state accumulation: In a typical experiment mass spectroscopy is used
to search for atoms with an anomalous number of electrons in their ground
state. Whether the chemical behaviour of such an anomalous atom would
remain unchanged remains an open question. A current limit on violation

from this type of experiment is 52 < 10727,

The limits from these experiments depend to a great extent on the assumptions made
in their analysis. Interestingly those experiments producing the lowest bounds are
not necessarily the most recent. These experiments and results are for small viola-
tions of the symmetrisation postulate of the type we might expect from the quon
theory. An alternative experimental consideration for the symmetrisation postulate
are the statistics of the more exotic elementary particles. For these particles with
short lifetimes it is difficult to first create and then make measurements on two par-
ticle states. While for some particles like the pion the spin-statistics theorem has
been confirmed there are many elementary particles for which successful experiments

have yet to be devised.
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1.6 Conclusions

The aim of this introduction to the spin-statistics theorem has been to summarise
the present understanding of spin-statistics. We have seen how the structure of the
periodic table and atomic spectra led to the discovery of Pauli’s exclusion principle
and the symmetrisation postulate. These core properties of nature are not a conse-
quence of quantum mechanics, which does not specify the symmetry properties of
wavefunctions. The search for a theoretical explanation of these phenomena then
centred around relativistic quantum field theory where the most complete modern
proofs show that integer spin particles with Fermi-Dirac statistics or half integer
spin particles with Bose-Einstein statistics are not consistent with the basic axioms
of the field theory. These proofs are however negative proofs and we have seen that
parastatistics in which wavefunctions transform according to any irreducible rep-
resentation of the permutation group are also consistent with quantum mechanics
even though they have not been observed by experiment. There also exists a local
algebra approach to quantum field theory in which the algebras of bounded opera-
tors generated by observables in bounded regions of space-time are studied. In this
theory the various kinds of parastatistics appear under appropriate conditions, see

Haag [32].

A proof of the spin-statistics theorem would be more satisfactory if it were to be
derived from a clear physical principle which allowed a more intuitive understanding
of the theorem. Unfortunately so far the suggestions for such an elementary proof
have been flawed. Current experiments agree with the spin-statistics theorem to
high precision but despite the best efforts of many of the century’s top physicists
an understanding of the spin-statistics connection has remained elusive. One of the
early proofs of the spin statistics theorem appeared in the PhD thesis of Dewey. He
began his physical review article on his work with the summary “The problem of
the connection between the spin and the statistics of particles was first tackled by
Pauli. His work was not correct ...”. The rest of this thesis will be an investigation
of an elementary non-relativistic construction of spin-statistics. As such I hope that

it contributes to the understanding of the spin-statistics theorem. The explanation
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it provides will not be complete although I believe that will still leave me in good

company.
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Chapter 2

Representation Theory

This chapter summarises the results in the representation theory of the symmet-
ric and unitary groups that are used subsequently. Anyone already familiar with
this material should skip this chapter, although the final section on the Littlewood-

Richardson theorem is probably not widely known and will be used extensively later.

I will present the representation theory of SU(n) and S, in parallel, in order to
emphasise the similarities between the two treatments that will lead to both being
classified by Young tableau. The examples are chosen to fit with the later chapters

and so may not appear as in a standard text.

2.1 Preliminaries

An isomorphism is a map between two sets which preserves the structure of the
domain of the map. In the sets with which we will be concerned this structure will
in general be a multiplication law on the set. An automorphism is an isomorphism

from a set back into itself so the domain and range of the map are the same.

An algebra of order n over the complex numbers is defined by n? complex num-
bers 7, where 1 < 4,5,k < n. Elements of the algebra are sets of n complex

numbers x = [z1,...,Z,]. Addition, multiplication and scalar multiplication are
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2.2. Groups and representations

defined according to the following rules

ax + by = [az1 + byi,...az, + by,] (2.1)

Xy = [Z Yij1TiYjs - - -aZ'Yz’jn-’Eiyj] (2.2)

a and b are complex numbers. An algebra is associative if x(yz) = (xy)z. All the

algebras we will meet are associative.

2.2 Groups and representations

A group, G, is a set of elements, g, closed under an associative multiplication law,
containing an identity element and with each element having a unique inverse. So
with I the identity element, g~'g = I. The order of the group G is the number of
elements in G and is denoted by Q¢. If the multiplication law of a group is commu-

tative as well as associative the group is called Abelian.

A matriz representation of the group, T'(G), is a map from G to a set of finite
dimensional complex matrices which preserves the multiplication law of the group,

so that

T(91)T(92) = T(9192) (2.3)

The dimension of the representation is the dimension of the vector space acted on
by the matrices. The trivial representation maps all elements of the group to unity

(regarded as a one dimensional matrix).

Given two representations of a group, T(G) and S(G), a third representation

can be formed by taking the direct sum of these two representations.

T(g) ®S(g) = flo) 0 (2.4)

0 S(9)

T and S form blocks on the diagonal of the new representation and the rest of the
entries are zero. Any representation that can be brought into this block diagonal

form by a change of basis is called a reducible representation, and conversely those
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Chapter 2. Representation Theory

representations which can’t be further decomposed into diagonal blocks are called
the irreducible representations of the group. Starting with a reducible represen-
tation we can look for a transformation which divides the representation into two
representations of lower dimension as in equation (2.4). The same process can then
be repeated for the constituent representations. If they are reducible there exists a
transformation which brings them into block diagonal form. As the matrix has finite
dimension the procedure must end with the representation expressed as a direct sum

of a set of irreducible representations.

An alternative intrinsic definition of irreducibility can be made by considering
the space the representation acts on. We will take the representation to be n dimen-
sional. Then if the exists a subspace of dimension m where m < n which is invariant
under all transformations of the group the representation is reducible. If there is
no invariant subspace the representation is irreducible. For a deeper discussion of

reducibility see [34] chapter 3.

A second way to construct a new representation of a group is to use the matrix

tensor product. This is the direct product representation.

(T ® 8)(9)ix.jy = [T(9)lij @ [S(9)]ay (2.5)

The matrix representation can be constructed by taking 7'(g) and replacing the
term T;;(g) with the matrix Tj;(g)Sy. If the representations 7" and S are of n and
m dimensions respectively the resulting matrices are of dimension n x m. Clearly
the multiplication law (2.3) is preserved for (I'® S) so the tensor product defines a
representation. The direct product representation is not in general irreducible even

when the representations used in the product are irreducible.

A subgroup H of G is a subset of the elements of G obeying all the requirements
of a group. So, for example, all subgroups contain the identity. A representation of
G must also be a representation of H, as the multiplication law (2.3) holds for all
g € H. In this way we can consider restricting a irreducible representation of G to

the elements of H. The representation of H defined in this way will in general be
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2.2. Groups and representations

reducible. It is the decomposition into irreducible representations of H of a restric-

tion of a representation of G that is the central problem of this thesis.

2.2.1 The symmetry group of an equilateral triangle

For our first example of a group we will consider the symmetries of an equilateral

triangle.

Symmetry operations leave the triangle unchanged but permute the labels of the
vertices. Reflecting in the three symmetry axes exchanges pairs of vertices. The
diagram can also be rotated by 27/3 clockwise or anti-clockwise which permutes all
three vertices. Leaving the diagram unchanged is the identity operation of this sym-
metry group. The group of symmetry operations has six elements which naturally

fall into three classes, the identity, reflections and rotations.

2.2.2 Cosets and the quotient group

Given a group G with a subgroup H we can define sets of elements of G' by taking
an element ¢ € G and multiplying all the elements of H by it. This set of elements
of G is called a left coset of G and is denoted gH. Right cosets can also be defined

by multiplying by g on the right.

For a finite group G divides into distinct cosets of H. Take an element g not
in H, none of the elements of gH are in H as otherwise ghy = he so g = hflhg
and is in H contrary to the assumption. All the elements of gH are also different

as gh1 = gho implies hy = hs. We now have two distinct sets of Qy elements H
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and gH in G. If the group G has not been exhausted we can continue by selecting
some element ¢’ not in H or gH. In this way G breaks down into a finite number

of distinct cosets each of Qg elements
G=H-+gH+¢H+... (2.6)

We see that the order of the subgroup Qg must divide the order of the group Qg.

An invariant subgroup of G is a group H C G for which
gHg ' =H (2.7)

gHg™ ! is the set of elements ghg~' where h runs through the subgroup H. For
an invariant subgroup H we know that gH = Hg from which we can define a

multiplication law for the cosets
(aH)(bH) = a(Hb)H = a(bH)H = ab(HH) = (ab)H (2.8)

where we used the fact that H is a subgroup to deduce that HH = H. The inverse of
a coset aH is a~'H so the cosets of an invariant subgroup form a group themselves.

This group is called the quotient group and is denoted by G/H.

2.3 Classes and characters

For an element g € G the class of g is the set of elements ¢’ € G that can be obtained

from g by conjugating with another element h € G, i.e.
g =h7tgh (2.9)

If an element ¢’ is conjugate to g and ¢” is conjugate to ¢’ then g and ¢" are also

conjugate. For example if we have g’ = hl_lghl then
g" = hy'hy tghihg = (hihe) ' g(h1hs) (2.10)

The elements of a group can be partitioned into these disjoint conjugacy classes.

The number of elements in each class is the order of the class. The identity element
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2.3. Classes and characters

forms a separate class of order one for every group. It can be shown that the number

of irreducible representations of a group is equal to the number of classes of the group.

Consider the example of the symmetries of the equilateral triangle. We will take
h to be a reflection. For a reflection we know that ="' is h. If we take ¢ to be a
clockwise rotation by 27/3 conjugating g by h we obtain ¢’ = h~!gh which is an
anti-clockwise rotation by 27/3. Both rotations are in the same conjugacy class. In
fact we find that the three sets of symmetries, rotations, reflections and the identity
form the conjugacy classes of this group. We will see later that there are also three

irreducible representations of this symmetric group.

The classes of a group are important when we consider a representation of the

group. For two elements in the same class
T(g') = T(h)~'T(9)T(h) (2.11)

Then taking the trace of both sides by summing the diagonal matrix elements we

find that
TrT(g)=TrT(g) (2.12)

The trace of a representation is a function of the classes of the group and is called

the character of the representation,

xr(g) =TrT(g) (2.13)

We have already seen that a representation can be decomposed in to a direct sum

of irreducible representations

Ti(g)
7(5) = B 13(0) = Bl 219

Tin(9)

where T} is an irreducible representation of . Taking the trace of T' we see that

xr(9) = xz;(9) (2.15)
J
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Chapter 2. Representation Theory

Any character can be written as a sum of the characters of the irreducible represen-

tations of the group.

The irreducible characters have some important properties which will be used
subsequently. A proof of these relations can be found in chapter 3 of [34] or any
other introduction to group theory. Firstly the irreducible characters are orthogonal

if averaged over the group,
1 _
O ZXj(g)Xk(g) = Yk (2.16)
9

j and k label irreducible representations of G. x(g) is the complex conjugate of the
character. As the character is a function of the classes of G if we label the classes

of G by X and take g) to be an element of A\ we can rewrite (2.16) as
1 —
% D X (90)xk(9r) = G (2.17)
A

where Q) is the order of the class A. If we consider the character X of a representation
T(g) = @Tj(g), where the T} are the irreducible representations of G, then from
(2.16) Ny, the multiplicity of the irreducible representation T} in the decomposition
of T is

1

Ny =5 ;Y(Q)Xk(g) (2.18)

The orthogonality of irreducible characters can be used to decompose a general rep-

resentation into its irreducible components.

The irreducible characters are also orthogonal when the characters of two classes

are averaged over the irreducible representations.
QS T = 0
i
Y xiWxilp) =0 (A #p) (2.19)
i

If the irreducible characters are recorded in a character table the two orthogonality
relations (2.17) and (2.19) refer to the orthogonality of the rows and columns of the

table respectively.
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2.4. The symmetric group

2.4 The symmetric group

The set of n distinct symbols (aq,...,a,) can be arranged in n! orderings. A

permutation p acts on the symbols by rearranging them into a new order,

plag,...,an) = (ap(l)a e 7ap(n)) (2.20)

There is an identity permutation leaving the symbols in their original positions and
all permutations have an inverse which undoes the change in order. Applying two
permutations to the same set of symbols is equivalent to a single permutation of
the symbols so the set of permutations is closed under multiplication and forms
a group. This group of all possible permutations of the n symbols is called the
symmetric group S,. S, is of order n!. The symmetries of the equilateral triangle
correspond to the symmetric group S3 where the symbols that are permuted in this

case are the vertex labels.

A cycle (ijk ...1) is a permutation in which the 7’th symbol is moved to the j’th
place the j'th to the k’th and so on. The I’th symbol replaces the :’th. The order
of the cycle is the number of terms in the cycle. Every permutation can be written

as a product of disjoint cycles. For example the permutation
(a” b’ c? d’ e’f) _) (d’f7 a” c? e’ b)

is the result of applying the cycles (134)(26), cycles of order one are omitted by con-
vention. A cycle of length m can be further factored into a product of (m — 1) two
cycles. Consequently any permutation can be written as a product of these trans-
positions. A permutation, p, is then referred to as even if it can be written as the
product of an even number of transpositions and odd if the number of transpositions
required is odd. The product of two even or two odd permutations is even while
the product of an even and an odd permutation is odd. The sign of a permutation

sgn(p) is one for odd permutations and zero for even permutations.

For the symmetric groups two permutations which, when written as a product

of disjoint cycles, have the same number of cycles of the same order are in the same
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conjugacy class. We can see this cycle structure of classes by considering conjugating

a cycle p by o, as in (2.9). For example if p is the cycle (123) then

P =0(123)0 ! = (6(1)o(2)0(3)) (2.21)

The cycle p is effectively applied to a reordered set of symbols so for the conjugate
element the length of the cycles is preserved. In S3 the symmetry group of the
equilateral triangle the three reflections written as cycles are (12), (13) and (23),

the rotations are (123) and (132).

2.4.1 The irreducible representations of 53

Continuing our example we will find the irreducible representations of S3. The trivial
representation, where all the elements are represented by 1, is an irreducible repre-
sentation of S3. The alternating representation of the symmetric group is defined
by associating 1 to the even permutations, in this case the identity and three cycles,
and —1 to the odd permutations, the two cycles. We can see that the alternating
representation obeys the same multiplication law as the group, a reflection followed
by a rotation is a reflection, two reflections is a rotation or the identity. This repre-

sentation is one dimensional and so irreducible.

There is also a two dimensional irreducible representation of S3. To find it we use
the defining representation of the permutation group. The defining representation

of a permutation p in S, is the matrix D(p) where

1if p(i) =
Dy(p) = (2.22)
0 otherwise
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2.4. The symmetric group

For S5 the defining representation is

100 010

D(I) = 010 D(12) = 1 00

0 01 0 01

0 01 1 00

D(13) = 010 D(23) = 0 01 (2.23)

100 010

0 01 010

D(123) = 1 00 D(132) = 0 0 1
010 100

This representation is reducible, multiplying a vector (z, z, z) by any of these permu-
tation matrices will leave the vector unchanged. It forms a one dimensional subspace
which is invariant under the group transformations. The subspace transforms ac-
cording to the trivial representation of S3. We can bring this representation into

block diagonal form by changing the basis. One possible choice of transformation is

1 1 1
P=11 -1 1
1 0 =2

Then P~'DP decomposes into the trivial representation and the irreducible two

dimensional representation, 7'.

10 ~1 0
T(I) = . T(12) = o
T(13) = bz =3/ T(23) = 23/ (2.24)
—-1/2 —1/2 /2 —-1/2
r(123) - ~1/2 —3/2 r132) — ~1/2  3/2
/2 —1/2 —1/2 —1/2

39



Chapter 2. Representation Theory

We will see later that the irreducible representations of S;, are in one-to-one corre-
spondence with the partitions of » and so these three representations are the only

irreducible representations of Ss.

2.5 The group SU(n)

A unitary matrix is a matrix whose inverse is its Hermitian conjugate. SU(n) is
the group of m X n unitary matrices with determinant one. The group SU(n) is a
connected, compact Lie group acting on vectors in C*. Elements of the group can

be parameterised by real numbers -y; where
g =exp(i »_yT;) (2.25)
J

The I'; are n xn hermitian traceless matrices and are called the generators of SU(n).
There are n? — 1 linearly independent traceless hermitian matrices so the group el-

ements require n? — 1 coefficients 7, to parameterise the elements.

The generators of the group are infinitesimal group elements,
exp(iel') — I + iel’

for small e. These infinitesimal group generators form a vector space and so are
often easier to work with than the group elements themselves. If we look at the

product of group elements
exp(iely) exp(iel',) exp(—iel'y) exp(—iely) = I + €2[Tq, Tp] + ...

This product is also a group element and so can be written as exp(i Y y.['c). As

e — 0 we must have
[Faa Fb] =1 fapel'e (2.26)

The constants fq;. are the structure constants of the group. The structure constants

determine the multiplication law of the group. They obey the Jacobi identity

fbcdfade + fabdfcde + fcadfbde =0 (227)
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2.5. The group SU (n)

The structure constants also determine a representation of the group, the adjoint
representation, (I'y)ij = —ifaij, see [27] chapter 2. The set of generators with com-

mutation relations defines an algebra associated to the group, the Lie algebra su(n).

2.5.1 SU(2)

A simple example of the structure constants for three generators is fupe = €qpe the
completely antisymmetric tensor. The commutation relations are then the angular
momentum commutation relations. The defining representation of the Lie algebra
is the n x n representation of the algebra which generates the group itself. For
the angular momentum commutation relations traceless hermitian generators can

be defined from the Pauli matrices
oy = = 0, == (2.28)

These generate the group SU(2).

2.5.2 Roots and weights of Lie algebras

A representation of the group defines a representation of the algebra and vice versa.
This correspondence is natural but to actually show that representations are con-
nected in this way takes some work, a good discussion is found in chapter 4 of [40].
We will turn now to discuss an irreducible representation 7'(SU (n)) associated with

a representation T'(su(n)) of the algebra.

From the set of n? — 1 generators we select a Cartan sub-algebra. This is a
maximal set of n — 1 commuting generators, which we will label H;. The space
the representation T'(su(n)) acts on will be spanned by eigenvectors of the Cartan
sub-algebra and the eigenvalues with respect to the Cartan sub-algebra will be used

to label these eigenvectors.
H;|p,T) = pi |p, T) (2.29)
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The eigenvalues p; are the weights of a representation and the vector g with com-
ponents pu; is a weight vector. The order of the terms in p is arbitrary, the results

apply equally to any ordering.

The adjoint representation is the representation obtained by taking the genera-
tors as the basis of the space the algebra acts on. A generator then acts on a basis

vector by commutation
[y |0, = |03, ) (2.30)
The Cartan sub-algebra corresponds to a set of vectors with zero weight
H;|Hj) =0 (2.31)
Diagonalising the space acted on by the generators gives a set of states |Yy) where
H; [Ya) = Ve (2.32)
The states correspond to generators Y, so that
[Hi,Ya] = aiYa (2.33)

The Y, are linear combinations of the generators not in the Cartan sub-algebra.
These weight vectors a of the adjoint representation with components «; are the

roots of the Lie algebra.

Let us see how an operator Y, acts on a vector in a general representation
T(su(n)).
H;Yo |H,T> = [H27 Ya] |H,T> + Yo H; |“7T>
= (p+ )i Yo |u,T) (2.34)
We see that the vector Yo |p,T') is labelled by the weight vector pu + e. We have
now identified the root vectors with raising and lowering operators for the weights

of a Lie algebra. By choosing an initial state and repeatedly applying raising or

lowering operators we find that

2 ) (2:35)
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p and g are the number of times the operator Y, or Y_4 can be applied to p before
reaching zero. Both p and ¢ depend on the choice of weight p and root . Equation
(2.35) is derived in chapter 6 of [27], it is equivalent to the condition that angular

momentum eigenvalues be integer or half integer.

2.5.3 The highest weight classification of irreducible representa-

tions

To provide a definition of a positive weight we fix the order of the generators in the
Cartan sub-algebra. This fixes the order of the components of the weight vector.
We then define a weight vector to be positive if its first non zero term is positive.
With this definition we can order the weight vectors, p; > po if p; — py > 0. The
highest weight vector of a representation is greater than other weight vectors and is

non-degenerate.

To provide a nontrivial example we introduce generators of the defining repre-

sentation of SU(4)

o 0 0 0
S1i = Soi =

0 0 0 o
P 1 0 I g 1 0 —if (2.36)
A R WY S '
e
Towrl g g

o; are the Pauli matrices defined in (2.28) and I is the 2 x 2 identity matrix. To
provide all the 15 generators of SU(4) we must also include the commutators of these
matrices. We can select the Cartan sub-algebra to be the set of diagonal matrices

E,, 51, and S5, in that order. A weight vector then consists of the eigenvalues
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(€4, 812, 82,). A basis for the space the representation acts on is

1 0 0 0
0 1 0 0
x] = X9 = X3 = X4 = (2.37)
0 0 1 0
0 0 0 1

As the Cartan sub-algebra is diagonal these basis vectors are eigenvectors of the

sub-algebra and can be labelled by their weights.

m= (dabt) e (o)

_ 11 _ 1 1
M3 = (—2—\/5,0@) Ky = (_maoa_§>

Using the definition of a positive weight vector

(2.38)

By > o > 3 > By

pq is the highest weight vector of the defining representation of SU (4).

By defining which weights are positive we are also provided with a classification
of raising and lowering operators depending on whether the associated root vector is
positive or negative. A simple root is a positive root which can not be written as the
sum of two positive roots. A positive root which is not simple can be written as the
sum of two positive roots and either these are simple or we can repeat the procedure.
Using this scheme we see that any positive root can be written as a sum of simple
roots with positive integer coefficients. From condition (2.35) it can be shown that
the simple roots are linearly independent and span the space of weight vectors, [27]
chapter 8. Therefore there are the same number of simple roots as generators in the
Cartan sub-algebra. Starting from the simple roots all other roots can be found by

combining the roots and checking the condition (2.35).

By definition operating on the highest weight of a representation with a raising
operator labelled by a positive root must give zero. As every positive root is a sum
of simple roots it is sufficient to consider only the simple roots. We will label the

simple roots @/, 5 = 1...m. Substituting p = 0 for a heighest weight into (2.35) we
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have

20 . ;
—=q 2.39
@)z ¢ (2.39)
The ¢7’s are non-negative integers. If a highest weight p* is the weight of a repre-
sentation where ¢* = 1 and ¢/ = 0 for j # k then u* is called a fundamental weight.

Any highest weight can be written as a sum of these fundamental weight vectors
p=>Y_ ¢ (2.40)
k

Each highest weight labels an irreducible representation of SU(n). The represen-
tations with highest weights u* are called the fundamental representations. It can
be shown that the irreducible representations of SU(n) can be constructed from
tensor products of the fundamental representations where the integers ¢* are the

multiplicity of the fundamental representations in the product.

The roots are the differences between the weights and the simple roots are the
minimum positive differences. From the weights of the defining representation of

SU(4) (2.38) the simple roots of the group are

al = P — Ko = (071’0)
=i = (b 3) a1
b = py— g = (0,0,1)
We can see that the roots a' and a? raise the Si, and S, eigenvalues by one
respectively and so correspond to the operators S;, and Ss, constructed from the
generators in the usual way. The raising operator Y,» is [F, Sa—]. With the simple
roots we can use (2.39) to find the fundamental weights.
1 (L1
B (2\/5 ’ 2’0)
2 _ (L
_ <ﬁ,0,0) (2.42)
3 (L ol
B (2\/5 0, 2)

The exact form of the simple roots and fundamental weights depends on the defini-

T T T

tion of the generators and the choice of the Cartan sub-algebra. Defining the simple

roots of SU(4) in this form will simplify the work later.
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2.6 Representations of the symmetric group and Young

tableau

2.6.1 Partitions, graphs and tableau

We turn now to finding the irreducible representations of the symmetric group. The
construction uses tableau and it is these graphs of partitions which we will introduce
first. Let A be a partition of an integer n into m integer parts, A = (A1, A2, ..., Apm)
where A\; + Ao + --- + Ay, = |A| = n and the order of terms is immaterial. If the
number of one’s in A is a, the number of two’s b etc then the partition can be
written A = (12,2°,3¢,...). We have already seen that the class of an element of
the symmetric group is determined by the number of cycles of each order and so
the classes of S, are labelled by partitions of n. As partitions don’t depend on the
order of the A\; we can adopt the convention that Ay > Ay > --- > X\,,. Then to
each partition we associate a graph or tableau with A\; boxes in the first row, Ao
boxes in the second and so on, the rows being aligned on the left. So for example

the partition (5,3, 3,2) of 13 is associated with the graph

We will keep to the convention that a graph refers only to an empty sequence of
boxes. When the boxes are labelled by symbols the figure will be referred to as a
tableau. In some cases the symbols that distinguish the boxes may be suppressed
when the figure is drawn although in the text it will still be referred to as a tableau.
We will see that not only are the classes of S, labelled by graphs of n boxes but so

are the irreducible representations of S;,.

2.6.2 Characteristic units of the group algebra

The Frobenius algebra of the symmetric group is the algebra obtained by taking the
elements of the group as the basis of the algebra. Then the multiplication law of the

group determines a product of the basis elements. If p; is an element of the group

46



2.6. Representations of the symmetric group and Young tableau

an element 7 of the algebra can be written
=Y &p (2.43)
J

where the {; are complex coefficients. The group algebra has many interesting prop-

erties, see [40] chapter 4. We will state a few of relevance here without proof.

The group algebra is isomorphic to a direct sum of matrix sub-algebras, subsets
of the elements of the algebra closed under multiplication. Each of these sub-algebras
defines a representation of the group as a group element can be expressed as a sum
of elements of the sub-algebra. The number of matrix sub-algebras in the group
algebra is equal to the number of classes of the group and the representations of S,
defined by the sub-algebras are the irreducible representations. The group algebra
is an algebra that contains all the irreducible representations of the group when
written as a sum of matrix sub-algebras. Each irreducible representation appears

with multiplicity equal to the dimension of the representation.

There are particular elements of the group algebra that are associated with
the representations of the group. These characteristic units of the algebra are the
idempotent elements 7 such that 72 = 7. We can express 7 as a sum of elements of

the irreducible matrix sub-algebras

T = Z Tj (2.44)
where j labels the sub-algebra. As 7; is idempotent it can be transformed into a
diagonal matrix (17, 0!~"#). Multiplying a group element by this characteristic unit

and taking the trace we obtain a compound character of the group.

X = ZT’]‘X]' (245)

A primitive characteristic unit is the characteristic unit associated with the irre-
ducible character xj, 7, = 1 and r; = 0 for j # k. From the definition of the
primitive characteristic units we see that any characteristic unit can be written as a
sum of primitive characteristic units. Two primitive characteristic units of the same
matrix sub-algebra are transforms of each other. Finally we state a lemma used

later
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Lemma 2.6.1. The product of two primitive characteristic units is either zero,

nilpotent, or a multiple of a primitive characteristic unit.

If the two primitive characteristic units are in different sub-algebras the product
is zero. If they are in the same sub-algebra and the product is not zero then, as the
primitive characteristic units both have rank one, the product must also have rank
one (the rank of the matrix is the number of linearly independent rows or columus).
The reduced characteristic equation of the product is a quadratic with a zero root,
z? — Az = 0. If A = 0 the product is nilpotent (22 = 0), otherwise it is a multiple of

a primitive characteristic unit.

We have seen that the irreducible characters of the group are associated with
primitive characteristic units which are linear combinations of the group elements.
We will show that the characteristic units of ), can be constructed by using tableau
and that they are also used to construct irreducible representations of the special

unitary groups.

2.6.3 Characteristic units of S,,.

The symmetrisation operator acting on r symbols is the sum of the group elements
of the symmetric group that permute the symbols. It is an element of the group al-
gebra of a symmetric group acting on the symbols. The antisymmetrisation operator

sums the same group elements but with a minus sign attached to odd permutations.

We take the graph of the partition A of n and assign to every box one of the
integers from 1 to n this is a Young tableau introduced by Young in [54]. The inte-
gers are just one choice of a set of n symbols and so the order that the integers are

assigned to boxes is not significant.

Let P; be the symmetrisation operator for the A; symbols in the 7’th row of the
tableau. Then P is defined to be the product of the m row symmetrisation oper-

ators. Multiplying P; by a permutation in P; produces the same symmetrisation
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2.6. Representations of the symmetric group and Young tableau

operator P;. So P;/\;! is an idempotent element of the group algebra. Consequently
P/, ..\ is also idempotent and therefore also a characteristic unit. Similarly
we define N as the product of the antisymmetrisation operators of the symbols in
each column. N/\!.. .Xq! is also a characteristic unit of S,,, A; is the length of the

7’th column of .

Neither of these characteristic units is primitive but if both are written as a sum
of primitive characteristic units they have only a single primitive characteristic unit
in common, see [40] chapter 5. The primitive unit in both N and P is associated with
the character x*. From lemma (2.6.1) the product of two primitive characteristic
units is zero, nilpotent or a multiple of a primitive characteristic unit. The product
NP/X!.. .Xq!)q! ... Am! contains the identity element of S,,. It can not therefore be
zero or nilpotent and so is a multiple of the primitive characteristic unit y*. The

normalised primitive characteristic unit is

x (1)

NP
Qg

n

x*(I) is the dimension of the irreducible representation A. We have associated the
irreducible representations of S;, to the partitions A of n via the primitive charac-

teristic units generated by a Young tableau of shape A.

As primitive characteristic units are a central feature of the later chapters it
is worth seeing an example for S3. An irreducible representation labelled by the
partition (2, 1) is associated with a tableau

12
3

Any other labelling of the boxes is equally valid. We can now write down P and N

for the tableau,

P =1+(12) (2.46)
N =1-(13) (2.47)
@NP - %(I +(12) — (13) — (123)) (2.48)
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Chapter 2. Representation Theory

It can be verified that this is an idempotent element of the group algebra. By con-
struction it is associated with an irreducible representation labelled by the partition

(2,1).

2.6.4 Constructing representations of SU(n) with characteristic units

We have seen that Young tableau of n boxes label the irreducible representations of
Sp. The characteristic units they generate can also be used to construct irreducible
representations of the special unitary groups. We will construct representations of
SU (n) from tensor products of the defining representation, this is the n dimensional
irreducible representation. The defining representation will have n weight vectors
for its basis vectors ' ...v" ordered so that v! > v2 > ... > v™. The differences

between adjacent weights provide the simple roots of SU(n),
ol =vt — it (2.49)
The generators can be normalised so the weights all have the same length and the
angle between weight vectors is the same for any pair. For the roots
1 1=y
aiaj=9 -5 j=it+lori—1 (2.50)
0 t1#jorjx1

This can be verified for the roots of the SU(4) defined in (2.42).

The fundamental weights are given by a sum of the weights of the defining

representation,
o j-1
p =Y v =5 +) kot (2.51)
k=1 k=1

From the condition (2.39) they must obey the relation

20t !

oy = (2.52)

and as the defining representation is a fundamental representation we can use the

results for multiplying roots (2.50) to check (2.51).
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2.6. Representations of the symmetric group and Young tableau

If we consider constructing a new representation by taking the tensor product of
q defining representations it is clear that the the highest weight vector would be the
tensor product of ¢ identical vectors all labelled by p'. The representation is not
irreducible but it must contain the irreducible representation with highest weight
qp'. If the tensor product is symmetrised then the tensor product of g p!’s will still
have the same highest weight vector although the dimension of the representation
has been reduced. The symmetrised tensor product is an irreducible representation
of SU(n), as it is the representation of least dimension which has highest weight
gp'. Symmetrising a tensor product of ¢ terms is equivalent to acting on the tensor
product with the primitive characteristic unit of S; labelled by a tableau with a

single row.

Rather than symmetrising we could consider antisymmetrising a tensor product
of ¢ defining representations. Permutations of a tensor product of basis vectors of the
defining representation are added with the vectors resulting from odd permutations
acquiring a minus sign. This is also the action of a primitive characteristic unit of
Sy labelled by a tableau of a single column. In this case it is clear that a tensor
product of ¢ identical basis vectors u! will be zero as each odd permutation will
cancel an even one. To be non zero the highest weight vector must be a product of
q different basis vectors of the defining representation, the vectors v', ..., v9. The

highest weight vector will have weight
p= v, (2.53)

which is the highest weight of the fundamental representation, u?, see equation

(2.51).

The fundamental representations of SU(n) are recorded using a Young tableau
for the characteristic unit of S; used to construct the highest weight of the repre-

sentation.
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Chapter 2. Representation Theory

Il
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Rather than fill in the tableau with basis vectors ¢! just the labels 7 will be used to

denote the vectors as in the example above.

We have already noted that a general highest weight can be constructed from the
fundamental weights, equation (2.40). We want to construct an arbitrary highest
weight vector of an irreducible representation from the defining representation. It
should have a highest weight p = >, ¢'p’. This highest weight vector will be

recorded in the tableau

qn-l q2 ql
1 1)1 1)1 1] 1] 1]
2 2| 2 2| 2 2
(2.54)
n1 === |n-1

There are n — 1 fundamental weights that the representation can be constructed

from, and each is repeated ¢* times in the tableau so this has the correct weight.

The tableau 2.54 is of a partition A where )\, = E;L;,i ¢’. To construct the
representation of SU(n) the primitive characteristic unit of the symmetric group
associated with the tableau A is constructed. If there are ¢ boxes in the tableau this
is a characteristic unit of S;. The characteristic unit (1) NP/S2s, consists of a set
of symmetry conditions which can then be applied to the tensor product of defin-
ing representations. The symbols 1...q used to construct the characteristic unit
correspond to the terms in the tensor product of the ¢ basis vectors of the defining
representation of SU(n). A basis vector of the irreducible representation A of SU (n)
is constructed by assigning basis vectors of the defining representation to boxes of
the tableau. The product is symmetrised with respect to the terms in the same row
then antisymmetrised with respect to those in the same column. The order of terms

in the tensor product has not been specified but neither has the labelling of the boxes
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2.7. Characters of U(n) and SU(n).

in the tableau for the primitive characteristic unit so this ambiguity is not important.

To see that (2.54) has the highest weight possible for the given shape of tableau
we can consider replacing one of the vectors v* with a vector with higher weight, v/
where j < i. As each column contains all the vV with j < i antisymmetrising the
column gives zero, no state with higher weight can be constructed using that shape

of tableau.

This procedure enables us to construct irreducible representations of SU (n) from
any Young tableau of up to n —1 rows. Representations with all the possible highest
weights can be constructed this way so we can construct all the irreducible rep-
resentations of SU(n). If we attempted to construct an irreducible representation
of SU(n) using a tableau with more than n rows each column would need to be
filled with different basis vectors of the defining representation. The defining rep-
resentation has only n basis vectors so this is not possible and no representations
can be constructed this way. A tableau with n rows can be used to construct an
irreducible representation of SU(n). Each of the columns of length n will contain
all n of the basis vectors of the defining representation. These terms will be present
in any vector of the representation and so this is the same representation as that
which is constructed using the tableau with the columns of length n removed. The
irreducible representations of SU(n) are labelled by and can be constructed from
Young tableau with up to n — 1 rows. Columns of n boxes can be added to the

tableau without changing the representation of SU(n).

2.7 Characters of U(n) and SU(n).

If we return to thinking of the tableau as a partition then we label the irreducible
representations of SU(n) with a string of integers f = (f1,..., fn—1). |f| = fi +
fo+ -+ fn_1 is the total number of boxes in the tableau. f is one of the possible
partitions of |f| though not all partitions label irreducible representations of SU (n)

as some partitions could be into more than n parts. The characters of U(n) and
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Chapter 2. Representation Theory

SU(n) are functions of the classes of the groups and these functions will depend
on the irreducible representation, labelled by f. To define these functions we first
parameterise the classes of the group. We will deal with U(n) and specialise the

results to SU(n) where necessary. A full account is found in [53] or [29].

An element @) € U(n) is conjugate to a diagonal element where the diagonal

terms have modulus one, see [53] chapter 7. So

€1
€
U-lQU = t (2.55)

€n

for some unitary matrix U and |¢;| = 1 for all i. Let ¢; = €' then the n angles
¢ parameterise the classes of U(n). We will use € to refer to the set of diagonal
elements (€1, €2,...,€,). The class is invariant under a permutation of the diagonal

terms so € is unordered.

As U(n) is a continuous group to sum a function of the classes over the group
we associate a volume element to the parameters € corresponding to the proportion
of the space of unitary matrices in the class. This is the uniform Haar measure on
the unitary group. Let

A=T]J(e - e) (2.56)

1<k
then the proportion of the group parameterised by angles lying between ¢; and
¢i + dp; is AAde; ...dp,. A class function of the unitary group is a symmetric
function of the angles and with this definition of a measure on the group we can

define the average of a function g(e).

Theorem 2.7.1. The average of a class function g(¢1,...,dy) is

1 2 2 .
—/ / gAANd, ... dp,
Q 0 0

where

2w 2w
Q:/ oo | ARdgy ... ddy
0 0
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2.7. Characters of U(n) and SU(n).

The class functions that we will average over the group are the characters of
U(n) and its subgroups. The character is the trace of the matrix representation
T(U(n)). As it is only a function of the class of the group elements not the elements
themselves we only need evaluate it on the diagonal elements of the group {€}. The

subgroup of diagonal elements is Abelian (the multiplication law is commutative),

T(d1yeesdn)T (s oy dl) =T(d1+ ¢y e vy bn + &) (2.57)

The representation decomposes into a sum of one dimensional representations Zy(€)
where |Zx(€)| = 1, as in chapter 7 of [53]. These representations obey the multipli-

cation law (2.57). Solving for one dimensional functions of €

Ty =€t ekn (2.58)

n

The characters of representations of U(n) are sums of monomials with integer coef-

ficients.

The characters are symmetric functions of the angles. They can however be
associated with antisymmetric functions yA, which appear naturally when averaging
a product of characters over the group. The simplest antisymmetric functions are
alternating sums of the monomials from which all the antisymmetric functions can

be constructed by taking linear combinations.
(B, -5 fn) = Y sgn(p) exp(kigr + - + knebn) (2.59)
p

The sum is over all permutations p of the integers k. This alternating sum can be

written as a Vandemonde determinant

elfl 6’2“ €l
Ce(d1yvvnpn)=| 1 E (2.60)
e]f" 6’5” .. efL"
which we will abbreviate and write as |e¥,...,ek|. The n rows are generated by

replacing k with each of the k; in turn. We observe that A itself is one of these

alternating sums,
—1 -1
A= (p-t1n-2,.,1,0 = €] - €p (2.61)
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The abbreviation [e} ™!, ...,e? | will always refer to the alternating sum A, rather
than some general alternating sum with coefficients ny — 1,2 — 1 etc. This is less

elegant than Weyl’s notation but will be necessary to track the different e;.

Integrating two monomials

2w 2T
/ / Zk Zkl d¢1 d¢n = 5k1k’1 5’%]% (2.62)
0 0

From this we find the product of two of the antisymmetric functions

2 2
0 0

which also gives us the volume of the unitary group, Q) = nl.

If we take a compound character X of the group and consider the antisymmetric
function XA it is a sum of monomials and we can order the monomials in a similar
way to that used to order weights. Zy > Zy if the first non-zero difference k; — k)
is positive. Ordering the terms of XA in this way we take the first term to be
cZyx. As XA is antisymmetric it must also contain all the other terms in ¢y
and as any permutation of the k’s is a monomial lower that c¢Zy we know that
ki > ko > -+ > k,. We can subtract ¢ from XA and repeat the procedure

expanding XA as a sum of the antisymmetric functions
XA:CCk—l-CICk/—l-... (264)
where (x > (¢ > .... Averaging XX over the group
1 2m 2w o
5/ XX AAdpy ...dpp =c* +* +... (2.65)
0 0

However if X is the character of an irreducible representation then the average over
the group should be one, by character orthogonality. So ¢ = £1 and the other

coefficients ¢’ etc are zero. The irreducible characters of U(n) are of the form

|6’f em
€E) = —/fY———7—
x(e) |e7f_1...eﬁ_1|

where ky > --+ > k,, this is the Weyl character formula for U(n). The highest

(2.66)

monoimial in this character is

J1_fo f
€1 €y ... €
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2.7. Characters of U(n) and SU(n).

where

flzkl_(n_l)a f2:k2_(n_2)a"'afnflzknfl_]w fn:kn

and therefore f1 > --- > f,.

The irreducible representations of U(n) are labelled by a string of decreasing
integers (f1,..., fn), in the same way that we deduced from the highest weights that
the representations of SU(n) are labled by tableau with a string of n — 1 decreasing
integers. To use the Weyl character formula (2.66) to find the irreducible characters
of SU(n) we restrict the characters of U(n) to elements of the SU(n) subgroup. To

do this we set

€p = €1€2...€p—1 (2.67)
Irreducible representations of U(n) restricted to SU(n) are also irreducible rep-
resentations of SU(n). Let u € U(n) and d = Detu, (d/d*)"/"u € SU(n). If

T((d/d?*)"/"u) is an irreducible representation of SU(n) then d'/"T((d/d?*)"/"u) is

an irreducible representation of U(n).

If we look at the character formula for SU(n) with condition (2.67)

6{1+(ml) o eilj‘l(n*l) (@1%s. . ‘Enil)f1+(n—1)
6{“ s 6{;11 (Elgg - Enfl)f"
Xf = oD 1) (2.68)
€1 ey (@& )Y
€1 . €n—1 (E1€2 R En—l)
1 . 1 1

Multiplying the first column of the determinant in the numerator by e;f " and the

last by column by El_f " doesn’t change the determinant. Repeating this for the other
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Chapter 2. Representation Theory

columns
G{I_fn"'(n_l) o Efll—_lfn—i—(n_l) (EIEQ . En_l)flffn‘F(nfl)
1 ... 1 1 ( )
ngil) s 65;1711) (6162 - Enfl)(n_l)
€1 - €n_1 (6162 - Enfl)
1 - 1 1

The character of (f1,..., f,) is the same as (f1 — fn,. .., fn—1 — fn,0). This is equiv-
alent to the statement that irreducible representations of SU(n) labelled by tableau
with n rows are equivalent to the representation labelled by the tableau with the
columns of length n removed. We have not established that the character labelled
by (f1,.--,fn=1,0) corresponds to the same representation of SU(n) that is con-

structed from the tableau (fi,..., fn—1) but this can be done see [53].

2.8 Characters of 5,

There is a well known formula for the irreducible characters of the symmetric group
due to Frobenius, a derivation of which is found in chapter 5 of [40]. The character
of an element depends on its class which we label with a partition w of n, where
the class is of all elements with w; one cycles we two cycles etc. As we saw with the
characteristic units of the symmetric group the irreducible representations of S, are
also labelled by partitions of n, A = (A;...A,). The irreducible characters appear
in the formula as coefficients in a polynomial of n variables x,
(@ =2 TI @+ +ad) =3 wxde ™ a2 ™2 ey (2.70)
r<s j=l..n
If the left hand side is expanded once for each of the classes w the characters of all
the irreducible representations appear as the coefficients of certain monomials in the
expression. From this formula the characters of an irreducible representation of S,

can be computed.
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2.9. The Littlewood-Richardson theorem

2.9 The Littlewood-Richardson theorem

The Littlewood-Richardson theorem is a combinatorial rule for computing the co-
efficients in the decomposition of a product of primitive characteristic units of the
symmetric group. Let Agm be a primitive characteristic unit of S, acting on m
symbols constructed from a tableau [A] and Agn be a primitive characteristic unit
acting on n different symbols. We know that S, x S, is a subgroup of S, ,. The
product of the two primitive characteristic units Ag‘mAgn will also be idempotent
and so a characteristic unit of Sy, 1,. In general it will not correspond to an irre-

ducible representation of S, , but will be a sum of primitive characteristic units of

Smtn
A AT =D "VR AR (2.71)
K
It is these coeflicients Y;\“n that we want to compute.
The Littlewood Richardson Theorem 2.9.1.

To every tableau which can be constructed according to the following rule there
corresponds a primitive characteristic unit A§m+n in the decomposition of the prod-

uct Ag‘mAgn, and this decomposition is complete.

LR,: Take the tableau [A] intact and add to it the symbols in the
first row of [n] to make a new tableau without changing the
order of the symbols. After the addition no two added sym-
bols may be in the same column. Next add the remaining

rows of [n] in succession according to the same rule.

LRy: The only allowed additions are those where each symbol in
[n] is placed in a later row than the symbol in the same

column from the preceding row of [n].

These rules were originally proposed by Littlewood and Richardson in 1934 [41],
however the subsequent proofs in [47] and [40] are not complete, the first correct

proofs appeared in the 70’s some forty years later. One version of the complete proof
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Chapter 2. Representation Theory

is given by Macdonald in [42].

2.9.1 Multiplying Young tableau

The Littlewood-Richardson rules (LR) can be more simply stated as a procedure for

multiplying two tableau one of shape A and the

other n. Take the graph n, without

loss of generality it can be assumed |n| < |A|, and fill the boxes on the first row with

a’s, the second row with b’s etc. So if A= (3,1), n = (2,1) we have

az‘

H a
A

Add the a’s to A in any way which makes a new graph with a maximum of one a in

each column. In our example there are five possibilities

EAEY [

EN

3

|

a1

Then repeat the procedure for each of the other rows in turn with the added condition

that counting right to left and top to bottom the number of a’s > the number of

b’s > the number of ¢’s > .... So in our example adding the single b in all possible

ways to get a graph we find

REREA ENEY ENEY |/ b
L] by | 3
by
3 B HE B | a]
a1 b2 a | b1 |
| by | 8] | &) | &)
by
by by
a1 & | & a1 ay| by a1 a4
| by | 82] L 32| 3| by | B2
| by

If we take the first of these tableau and count the number of a’s and b’s from the

right we start with one b and no a’s in the right-hand column. This doesn’t agree
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2.9. The Littlewood-Richardson theorem

with the condition that the number of a’s always be greater than or equal to the
number of b’s so we discard this tableau. Checking the other tableau similarly and

counting top to bottom as well we finish with a set of nine tableau.

‘ al\ 5‘2‘ ‘ ‘ al\ az‘ al\ ‘ al\
by | 3| by [
by by
& | ladl
| by | | a1 a1 a1
| 82| | 8| | by a| by | &)
b by

Within this set of tableau the graph (4,2,1) is repeated twice with different ar-
rangements of the letters. In terms of characteristic units we have two primitive
characteristic units of Sy,+, which both correspond to the same irreducible repre-
sentation, two equivalent primitive characteristic units. The number of graphs k in

the product of the two tableau is the coefficient Y{*

An> SO in our example

2.9.2 Applying the Littlewood-Richardson theorem to representa-

tions

As the primitive characteristic units project onto irreducible representations of the
symmetric groups the Littlewood-Richardson theorem is also a theorem about the
decomposition of a representation of Sy, into irreducible representations of the

Sm X Sy subgroup.

Consider any group G of order Q¢ with a subgroup H of order . An irreducible
representation of G restricts to a representation of H. If the irreducible characters

of G are X; and the irreducible characters of H are x; then for h € H

Xi(h) = cijx;(h) (2.72)
J
cij is the multiplicity of the representation j of H when the representation ¢ of G is

restricted to H.

61



Chapter 2. Representation Theory

The character of a group is a function of the classes of the group. Let a be a
class of G' of order Q%, Q% of these elements are in H. Elements in different classes
of G must be in different classes of H but a class of G can break up into several
classes of H. We label the classes of H which are in the class a of G with oy, ..., a;.

Using the character orthogonality relation (2.18) we can find the coefficients c;
Cik = ZQ | Xi(a)Xi () (2.73)

The sum is over all classes of H. With a formula for the coefficients c¢;; we can

investigate the composite character of G that they define.

Zcikyi(ﬁ) T Oy ZQHXk ;) ZX

[

1 0
= 0y X g @71

where we applied the orthogonality relation (2.19). This can be rearranged into a

second formula relating the characters of a group and its subgroup, so we have

h) = cijxi(h)
i

QO Qﬂk
S eXa®) =Y Q(; o X3 () (2.75)
3 B G

The multiplicity of the representation j of H when the representation ¢ of G is re-
stricted to H is the same as the multiplicity of the representation 7 of G when the

representation j of H is used to induce a representation of G.

Returning to characteristic units of the symmetric group, the Littlewood-Richardson
theorem gives a procedure for calculating the coefficients of the primitive characters
of Sy4n from a primitive character of the subgroup S, x S,, (2.71). These are the
coefficients of the induced representation in (2.75) so the same coefficients from the
Littlewood-Richardson theorem also give the decomposition of a representation of

Sm+n into irreducible representations of Sy, X S,.
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2.9.3 Decomposing representations of SU(m + n) into representa-

tions of SU(m) x SU(n)

In section 2.6.4 we discussed how characteristic units of S,, are used to construct
irreducible representations of SU(n). In [33] and [37] the Littlewood-Richardson the-
orem for multiplying tableau is used to decompose a representation of SU(m + n)
into irreducible representations of its SU(m) x SU(n) subgroup. We know that the
multiplicity of an irreducible representation 7;(SU (m) x SU(n)) when an irreducible
representation R;(SU(m+n)) is restricted to SU(m) x SU(n) is equal to the number

of representations 7 induced by a representation R; of the subgroup.

A representation of SU(m) x SU(n) is constructed from two characteristic units,
one of S; and another of S,. The characteristic unit of S, (respectively S,) act on
the tensor product of ¢ (p) basis vectors of the defining representations of SU(m)
(respectively SU(n)). The product of the two primitive characteristic units is a char-
acteristic unit of S;, and induces a representation of SU(m + n). The Littlewood-
Richardson theorem gives the number of primitive characteristic units of Sy, in the
decomposition of the product of the primitive characteristic units of S; and S,. Each
primitive characteristic unit generates an irreducible representations of SU(m + n).
The number of irreducible representations of SU(m + n) induced by the represen-
tation of SU(m) x SU(n) is the same as the multiplicity of the representation of

SU(m) x SU(n) in the decomposition of the chosen representation of SU(m + n).

Itzykson and Nauenberg [37] point out that this simple situation is complicated
slightly by the use of multiple graphs to label a single representation of SU(n). All
the irreducible representations of SU(m) x SU(n) are labelled by two graphs of m—1
and n — 1 rows respectively but without changing the representation we can add «
columns of m boxes to the first graph and 8 columns of n boxes to the second. For
example the representation (2,1)(2) corresponds to the graphs

a B

-~
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Applying the Littlewood-Richardson theorem we multiply the two tableau producing
tableau which label irreducible representations of SU(m +n). Counting the number
of tableau of a particular shape gives the multiplicity of the irreducible representa-
tions of SU(m) x SU(n) in the decomposition of the representation of SU(n + m)
labelled by a tableau of that shape. Tableau with columns of m + n boxes can be
discarded as the results for these representations of SU(m + n) can be obtained by

considering the tableau with the columns of length m + n removed.

Let us look at a simple example. We will find the multiplicity of the repre-
sentation (2,1)(2) of SU(3) x SU(2) when the representation (4,2,1) of SU(5) is
restricted to the SU(3) x SU(2) subgroup. The representation (4,2, 1) is labelled by
a tableau of seven boxes. For this to be a result of the multiplication of two tableau
the two tableau must have a total of seven boxes between them. To the tableau
(2,1) we can add a columns of three boxes without changing the representation and
we can add f columns of two boxes to (2). For the two tableau to consist of seven
boxes in total we must take &« = 0 and 8 = 1. We want to find the product of the

tableau

This is the tableau multiplication done in section 2.9.1. The graph

appears twice in the result so the representation (4,2,1) of SU(5) when restricted to
the SU(3) x SU(2) subgroup contains two copies of the (2,1)(2) irreducible repre-
sentation of the subgroup. It is this procedure that will be extended in chapter 4 to

provide a tableau method achieving a similar decomposition for a subgroup of SU (4).

We have now reviewed the representations and characters of the symmetric and
unitary groups and discussed the relationship between them. We have also dis-
cussed results relating to the decomposition of a representation of a group restricted

to a subgroup culminating in the Littlewood-Richardson theorem which provides a
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method of evaluating the multiplicity of representations both of subgroups of the
symmetric and the unitary groups. This should provide the necessary tools for the

subsequent investigation.
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Chapter 3

Quantum indistinguishability

Berry and Robbins (BR) in a series of papers [8], [9] and [10] have proposed an
alternative formulation of non-relativistic quantum mechanics in which the spin-
statistics theorem is derived from the properties of a position-dependent spin basis
of the wavefunctions. In this chapter we will review this construction in order to
demonstrate the underlying group-theoretical properties. The particular use of the
Schwinger operators in [8] can then be seen as a choice of a certain set of represen-
tations of the groups. The subsequent chapters will involve deriving the properties

of this construction for general representations.

I will not present the entire scope of their work here. In particular the dis-
cussions of the relationship between the construction, relativity and the invariance
of the system under Lorentz or Galilean transformations has been omitted along
with the extension to particles with additional quantum properties such as colour,

strangeness or isospin (These are discussed in [9]).

3.1 Introduction

The construction of Berry and Robbins suggests an elementary non-relativistic basis
for the spin-statistics theorem. As quantum mechanics alone is insufficient to derive
a spin-statistics connection it is necessary to include additional physical postulates.

To be accepted as an explanation of spin-statistics these additional requirements
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3.2. The position-dependent spin basis

should be more transparent than the symmetrisation postulate itself. Berry and
Robbins suggest that the spin-statistics connection could be a consequence of two
additions to normal quantum mechanics, the correct incorporation of the indistin-
guishability of identical particles (so that the space of wavefunctions has built into
it the indistinguishability of states related by the exchange of particles positions and

spins) and the singlevaluedness of wavefunctions on this space.

The construction is reminiscent one of the classical belt tricks that Feynman
found indicative of the spin-statistics connection, see figure 1.2. In this model
fermions are seen as tethered objects where exchange introduces a twist in the ribbon
connecting them whilst bosons correspond to the ordinary untethered objects. We
will see that the construction avoids the objection that elementary particles have
no ribbon-like topological marker as the spin basis itself records the exchange of

fermions without a classical ribbon.

3.2 The position-dependent spin basis

The wavefunction of a system of n particles with spin s would normally be expanded

on a spin basis |M) where the basis vectors are labelled by the z-components of the

n spins, M = {my, mo,...,my,}.
[T(R)) =) ¢u(R)M) (3.1)
where R = {ry,ry,...,r,} is a point in the configuration space of the n particles,

the space R3" with coincident points removed so no two particles can occupy the
same position. In this description the identical particles are still identified by their
labels so, for example, if we exchange particles 1 and 2 this is a different point in the
configuration space. In order to make the particles truly indistinguishable permuted
configurations of particles will be identified and we will insist that the wavefunction

be singlevalued on this new configuration space. So if p is an element of S,
[U(R)) = [T(pR)) (3.2)
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The permuted configuration is pR = {rp(l), . rp(n)}. To exchange the particles,
rather than just the position labels, we must exchange the spins of the particles
when we exchange the positions. In BR this is done using a position-dependent

unitary transformation U(R) to generate a position-dependent spin basis,

IM(R)) = U(R)|M) (3.3)
This position-dependent spin basis |[M(R)) is required to have certain properties.
3.2.1 The basis depends smoothly on R.

3.2.2 There is a single state for all permutations of particles (this excludes paras-

tatistics),
IPM(pR)) = ¢V M(R)) (3.4)

p is a permutation of the n particles with their spins,

3.2.3 Spins are parallel-transported.
(M'(R)|[VM(R)) =0 (3.5)

M’ and M are arbitrary sets of spin quantum numbers. This requirement
ensures that their are no local changes in phase associated with travelling

around a contractible closed loop.

By combining the second and third conditions we can show that the position-
dependent spin basis must transform according to the trivial or alternating repre-
sentation of the permutation group. First we will take o to be an exchange of two
of the particles keeping the rest fixed. Applying the condition (3.4) twice we find
that

IM(R)) = |o? M(e>R)) = ¢ ("®)|g M(o R))

= ¢ilar(R)tas (R)\(R)) (3.6)
The general solution of this is

o% (R) =km+ ﬁa(R) (37)
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3.2. The position-dependent spin basis

where k is an integer and

fs(0R) = —B-(R)
Using (3.4) and the result (3.7) we can write

(cM'(eR)|VoM(oR)) = (M'(R)[VM(R)) +i(V5;(R)) (M'(R)M(R))

= (M'(R)|[VM(R)) +i(V;(R)) dmmr (3.8)
Applying the parallel-transport condition we have
(Vs (R)) Spanr = 0 (3.9)

To satisfy (3.9) for all R, M and M’ requires (3,(R) to be a constant. As (,(R)

changes sign under odd permutations it must be identically zero. We have the result
|oM(0R)) = (~1)*M(R)) (3.10)

In deriving (3.10) we assumed that the permutation o was an exchange of two
particles. However as all permutations can be constructed from a product of two-

cycles this can be rewritten for a general permutation p
PM(pR)) = (~1)**#"?)|M(R)) (3.11)

If k£ is even the states of the position-dependent spin basis transform according to
the trivial representation of the permutation group. If k is odd the states transform

according to the alternating representation.

In [8] BR provide a construction of U(R) for which they show that
k= 2s (3.12)

The construction for n particles depends on the solution of a topological problem I
will describe later. In the two particle case the solution of this problem is simple and
the construction can be easily explained. Before looking at the explicit construction

of U(R) we will see how taking k = 2s leads to the spin-statistics connection.
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3.3 Quantum mechanics in the position-dependent spin

basis

First we assert the condition that wavefunctions on the position-dependent basis are

singlevalued.
[¥(pR)) = [¥(R)) (3.13)
From (3.11) and (3.12) we know that

[T(pR)) = Y ¥m(pR)(=1)* @)~ M(R))
M

= Y dom(pR)(-1)*# P M(R)) (3.14)
M
So for the components of the wavefunction we have

Yom(pR) = (1) Dynp(R) (3.15)

This has the form of the spin-statistics relation and to demonstrate that it is equiv-
alent we show that these coefficients obeys the same Schrodinger equation as the

coefficients in the usual spin basis.

An operator A in the position dependent spin basis is
AR) = U(R)AUT(R) (3.16)

In this way the operators in the fixed- and position-dependent spin bases obey the

same commutation relations. If we compare the action of A in the two bases

(M(R)|AR)[¥(R)) = > (M|UTR)U(R)AUT(R)¢)mr (R)U (R)| M)
v

= 37 (M Ay (R)[M)
MI
= (M]A]¥) (3.17)
which is the same as the equation for the action of the operator A in the fixed-spin

basis. By defining the operators on the position-dependent spin basis in this way all

the usual properties of non-relativistic quantum mechanics remain unchanged. So
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3.4. The Schwinger representation of spin

for a choice of U(R) with the required properties and where k = 2s the wavefunc-
tions are required to obey the spin-statistics theorem while all the usual properties

of quantum mechanics are maintained.

3.4 The Schwinger representation of spin

In the Schwinger representation of spin a pair of harmonic oscillators with creation
and annihilation operators af, a and b', b are assigned to each spinning particle.
The spin operators are defined using the Pauli matrices
1 a
S:—(at bT)o’ (3.18)
2 b
S is a vector of spin operators defined by the vector of Pauli matrices o. In the
Schwinger representation states are labelled by the number of quanta in each har-

monic oscillator. From (3.18)
Liata — ot
S, = E(a a—b'b)

As a'a is the number operator for the “a” oscillator the z-component of spin for a

state is

m = _(na - nb)

2
where n, is the number of quanta in oscillator a. Similarly the total spin of the

particle is

1
§ = E(na + nyp)

We can think of the state as being represented by 2s quanta split between the
two oscillators. The spin raising and lowering operators move a quantum from one
oscillator to the other, changing the z-component of spin by one whilst keeping the
total spin the same. For example with three quanta, spin 3/2, a state with m, = 1/2

is described schematically by the following diagram.

yele

S/S

h &
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To construct spin states for the n spins we use n pairs of oscillators,
alabh ree aanabn

In order for the operator U(R) to exchange spins, BR define an exchange algebra of

operators EY which move quanta between the pairs of spin oscillators.
a
(J J)a ' (3.19)

Given a pair of oscillators a;,a; this defines a vector of three exchange operators
E¥ as in the case of the spin operators. A second set of operators Ezj is defined

similarly then
EY =EY + EJ (3.20)

Defining the exchange algebra in this way an operator Ej‘f moves a quanta from
oscillator a; to a; and one from b; to b;. We can see that including these operations
the total spin of the individual particles is no longer fixed but the total number of
quanta in the whole system of oscillators is still constant. Schematically a general

spin state can be represented as a distribution of 2sn quanta between the oscillators.

1 2 n
aOOO O O

e ole

The eigenvalue of such a state with respect to the operator Eij is ;5.

1
€ij = i(nal + Np; — naj - ’I’Lbj)

= S; — Sj (3.21)

States can be labelled by the eigenvalues of the z components of the exchange algebra
ei; and the z components of the spins m; instead of the occupation numbers n;, ny;

of the oscillators.
|l’l‘> = |61236137"'7en—1n7m17"'amn> (322)
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3.5. U(R) for two particles

For states |p) where the spins of all the particles are equal, the eigenvalues e;; of the
exchange algebra are all zero, see equation (3.21), and we can return to our original

label of the state |M).

3.5 U(R) for two particles

In [8] BR construct a unitary operator U(R) for two particles using the Schwinger
representation. For two particles the position-dependent basis is a function of the
relative position of the particles, r = r{ —ro. Then exchanging the particles changes
r to —r. The spin basis is |[M) = |my, mg) where the state with the spins exchanged
is denoted |[M) = |mg, m1). The position-dependent spin basis is generated by U(r)

S0
M (x)) = U ()| M) (3.23)

From equation (3.11) the exchange requirement for two particles is
[M(-1)) = (~1)*|M(r)) (3.24)
where (—1)* is the exchange sign for the position-dependent basis generated by U (r).
Using the Schwinger representation of the spin basis we can write the exchanged

state |[M) in terms of spin state |M). To achieve this we define an operator generated

by the element E;Q of the exchange algebra,
Y = exp(—ink,?) (3.25)

A state |u) of the Schwinger representation is formed by applying creation operators

to the ground state. A state with n,, quanta in the oscillator a; etc is written
) = (a])"s (ab)"ez (b)) (b])™210) (3.26)

We can split the operator Y into operators Y, and Y}, operating on the a and b

oscillators respectively. Y, and Y}, commute and the operator Y is the product Y, Y.

Y, = exp(—irE,,) (3.27)
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The operator Y, induces a transformation on the vector of creation operators
(af of ) = Yo(al o )V
= ( a]; a; )exp(—igdy)
_ ( aJ{ a; ) 0 -1
_ ( - ) (3.28)

Y} induces a similar transformation in the operators b]{ and b;. Using these results

we can write the action of Y on the state |u)
V) = (=127 (af)e2 (af) "o (0]) "2 (b])"40) (3.29)
For a state |M) where s; = sy = s we find that
Y|M) = (-1)*|M) (3.30)

We can use this exchanged state to investigate properties of the position-dependent

basis.

We will assume that U(r) is generated by the algebra of exchange operators so

that
U(r) = exp(—ic(r).E) (3.31)
Starting from the exchange requirement (3.24) we know that
U(-1)[M) = (-1)*U(r)|M) (3.32)
Using the operator Y to rewrite |M) from equation (3.30) we have

U(-1)Y|M) = ()" 7*U(x)|M)

Ul(r)U(-r)Y|M) = (-1)*2|M) (3.33)
We can now define a new operator V(r) where

V(r) = Ul (x)U(-r)Y (3.34)
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3.5. U(R) for two particles

V(r) is also generated by the exchange algebra and
V(r)|M) = (=1)*"2|M) for all |M) (3.35)
This implies that V' (r) is diagonal in the |M) basis. An operator
exp(—id(r) B12)

generated by E!? is diagonal in any basis and next we will show that V(r) is such

an operator.

In the |M) basis V(r) must commute with any operator generated by E12.
V (r) exp(—id(r)EX)VTi(r) = exp(—id(r)E'?) (3.36)
This is equivalent to
exp(—id(r) {V (r) E;>V'(r)}) = exp(—id(r) E;?) (3.37)
which implies that
V(r)ERVi(r) = E? (3.38)
in the | M) basis. To any element generated by the exchange algebra
exp(—ic(r).E'?)

we can associate a rotation matrix Re(|c|), a rotation about the axis ¢ by an angle

lc|. Then using the rotation matrix R" associated to V (r) from (3.38) we have
RYz: =2 (3.39)

The 2 direction is invariant under the spatial rotation associated to V' (r) and con-

sequently it must correspond to a rotation about the z axis.
V(r) = exp(—id(r)E,) (3.40)
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3.5.1 The exchange sign is independent of U(r)

k

Using these results for V' (r) we can see that the exchange sign (—1)" is independent

of the particular form of U(r). From equation (3.21) we know that the spin vectors

are null states of E!2.
EP?|M)y=0 (3.41)
As V(r) is generated by E!? this implies
V()| M) = [M) (3.42)
Comparing this to equation (3.35) we see that
k=2s (3.43)

The exchange sign (—1)* is that required to produce the correct spin-statistics con-
nection for any operator U(r) with the required properties. The exchange sign is

topological.

3.5.2 Constructing U(r)

These results also suggest how to construct the operator U(r). We saw previously

that any operator generated by E12 does not effect the spin states |M).
explia(r) B12)|M) = |M) (3.44)
If we define a new unitary operator U’(r) where
U'(r) = U(r) exp(ia(r)EL?) (3.45)
then
|M(r)) = U(r)|M) = U'(r)| M) (3.46)

The same position-dependent basis is generated by both U and U’.
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3.5. U(R) for two particles

To determine U (r) it is sufficient to determine the action of the associated spatial

rotation RY (r) on the 2 axis. From the definition (3.34) of V(r) we have
(RY(x)) 'RV (—r)Ry(m)2 = 2 (3.47)

where Rj(7) is a rotation by m about the y axis, the rotation associated to the

operator Y. This condition on the rotations reduces too
RY(r)z = —RY(-r)z (3.48)
To simplify this further we can define é(r) = RY(r)2 then
é(—r) = —é(r) (3.49)
or é(r) is odd. A simple solution with this property is to take é =t so
RY(r)z = ¢ (3.50)

So one example of the operator U(r) which generates the position-dependent spin

basis is
U(r) = exp(—ifn.E'?) (3.51)

where R;(0)2 = 1.

3.5.3 Smoothness of |M(r))

The choice of U(r) in (3.51) is smooth everywhere except for the south pole. There-
fore the position dependent basis | M (r)) must also be smooth except possibly at the
south pole. We can choose a second operator U'(r) related to U(r) by a rotation
about the Z axis as in equation (3.45). U’(r) will be an alternative exchange rotation

first from z to —z then from —z to r
U'(r) = exp(—i(r — ). E'?) exp(—iﬁEf) (3.52)

U'(r) is clearly smooth near the south pole so the position-dependent basis |M(r))
is also smooth there. As both U(r) and U'(r) generate the same position-dependent

spin basis, the basis is smooth everywhere.
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3.5.4 Parallel-transport of |M(r))

The parallel-transport condition (3.5) is
(M'(r)|[VM(r)) = (M'|UT(r)VU(r)|M) =0 (3.53)

U(r) and U(r+dr) are infinitesimally different exchange rotations and so differ only

by a linear combination of the elements of the exchange algebra.
Ul(r)VU(r) = a(r)EZ + B(r) B2 + y(r) EX? (3.54)

Therefore

(M'(r)|VM(r)) =

(3.55)
a(r)(M'|EP|M) + B(r)(M'|EZ|M) + y(r)(M'|EX|M)

The physical spin states |[M) of the Schwinger representation are null states of EL?,
EX|M)=0 (3.56)

So the “a” term in (3.55) vanishes. As Ef and E'? operators raise or lower the
total spin of one of the particles the “4” and “y” terms are inner products of a spin
state (s,s) with a state (s £1/2,s F 1/2). These also vanish which demonstrates

that the position-dependent basis parallel-transports spins.

3.6 The Schwinger representation of SU(2n)

We will see that the Schwinger representation of n spins is equivalent to the com-
pletely symmetric representation of SU(2n). The algebra of exchange operators

generates the subgroup SU (n) while the n sets of spin operators generate the group

[SU@)]"

We begin by defining a set of matrices related to the spin operators of the
Schwinger representation. The spin operators S/ correspond to a vector of 2n x 2n

matrices 8’ which are block diagonal with the Pauli matrices o in the j’th 2 x 2
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block. The other terms in the matrix are zero.

0

S/ =~ o (3.57)

0
We can see immediately that these matrices have the commutation relations required
for the spin operators of the n particles. All the spin matrices commute with those of
a different spin while the three matrices of a single spin have the angular momentum
commutation relations. These spin matrices generate the group [SU(2)]", n sets of

commuting matrices each generating the angular momentum group SU(2).

As there exists a simple matrix analogue for spin operators in the Schwinger
representation of spin we can expect such an analogy to continue for the exchange
algebra. The operators E¥ in the Schwinger scheme are related to a vector of n x n
matrices £7. The nonzero terms in these matrices are where the i’th and j’th

columns intersect the ¢’th and j’th rows.

0

o111 o112
ij_ 1 -
£V =2 . (3.58)

021 022

0
These matrices form a matrix algebra with the same commutation relations as the

exchange operators in the Schwinger representation. We can see that the matrices
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span the space of Hermitian n x n matrices and so the exchange algebra is the Lie
algebra su(n). The matrices defined in (3.58) generate the group of n x n unitary
matrices with determinant one, SU(n). So if we take u to be

u=exp()_c”.£7) (3.59)

ij

then w is in SU(n). In order to define matrices related to the exchange algebra
which have the same commutation relations with the matrices S, as the operators
in the Schwinger representation we take the tensor product of E,ij with the 2 x 2
identity matrix I. The elements u generated by the exchange algebra now permute

the 2 x 2 blocks in [SU(2)]".

By including the commutators of £7 ® I and S' we generate a set of 2n x 2n
matrices which span the space of Hermitian 2n x 2n matrices. These matrices define
the Lie algebra su(2n) and generate the group SU(2n). We see that the algebra
defined by the Schwinger operators is therefore also su(2n) and the states |u) are
vectors in a representation of SU(2n). The existence of unphysical states where the
particles have different spins is a necessary consequence of using the larger algebra

of operators which generate the permutations of the spins.

The Schwinger representation of the spins is isomorphic to the symmetrised
tensor product of 2ns copies of the 2n x 2n defining representation of SU(2n), the
generators of which are the matrices we have just defined. To confirm this we can
check the highest weight of the Schwinger representation. States in a representation
of SU(2n) can be labelled using the eigenvalues of a maximal set of commuting
matrices, the Cartan sub-algebra. To construct the Cartan sub-algebra we will

select the diagonal generators EY and S!. As with the Schwinger scheme

) = le2; €13, - en—1n, M1, ., Mp) (3.60)

To define a highest weight we fix the order the eigenvalues in the definition of 4 and
say that a weight vector of eigenvalues u is positive if the first non zero eigenvalue is
positive. The highest weight state is then the state |u) for which e is a maximum

followed by the other eigenvalues in order.
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3.7. U(R) for n particles

The highest weight state of the Schwinger representation will have all the quanta
in the oscillator a;. This makes e;2 maximum and m; maximum. This highest weight
will be 2sn |v) where |v) is the highest weight state of the Schwinger representation

with just one quanta,
V) =leia=1/2,...,e1, =1/2,0,...,0,m; =1/2,0,...,0) (3.61)

This highest weight v is also the highest weight of the 2n x 2n defining representation
of SU(2n) whose matrix generators we defined. As a basis vector in the defining

representation
lv) = ‘ (3.62)

The representation of SU(2n), which has a highest weight that is 2sn times the
highest weight of the defining representation, is labelled by a Young tableau with a

single row of 2sn boxes, see section 2.6.4.

This confirms that the Schwinger representation is a symmetrised tensor product of
defining representations as those are the symmetry conditions recorded by such a

tableau.

3.7 U(R) for n particles

For n particles the operator U(R) which generates the position-dependent spin basis

will have the form.

n

UR) =exp(—i Y c;(R).EY) (3.63)
i<j=1

The operator must still generate a position dependent basis which is smooth, parallel

transports and where

PM(pR)) = (1)) M(R)) (3.64)
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which derives from the condition that a single state represents all permutations of
particles. We have just seen that the operators EY are naturally associated with
the group SU(n). In the same way the operator U(R) is connected to an element
u(R) of SU(n).

n

u(R) = exp(—i »  ¢;;(R).EY) (3.65)
i<j=1

U(R) is the Schwinger representation of the element u(R) in the SU(n) subgroup
of SU(2n). We can express this as U(u(R)).

We want to find the effect of the permutation condition (3.64) on the elements
u(R) of SU(n) used in the construction. To do this we must write the state |pM)
in terms of |M). As all permutations can be written as a product of two cycles we
will begin by considering the exchange of the first two particles pj2. As with the

n = 2 construction we can use the fixed exchange rotation exp(—ing}?)

p12M) = (=1)* exp(—ink,”)| M)

(—1)*U(exp(—inE,?))|M) (3.66)
The element of SU(n) that produces the exchange is

0 1
exp(—in€,*) = | -1 0 (3.67)
I

where I is the 2n — 2 by 2n — 2 identity matrix. This is an example of a phased
permutation matrix
67'¢1

iz

where exp(i ) ¢;) = sgn(p) and D(p) is the n x n defining representation of the
permutation p. These phased permutation matrices are a subgroup of SU(n) and

the operator U associated with one of them will permute the n spins. For a general
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permutation p
PM) = (~)F BT ({1, ¥} D(p))|M) (3.68)

where the diagonal matrix of phases has been abbreviated {e*',... e}, From

the permutation condition (3.64)
U(u' (R)u(pR))[pM) = (=1)**"?) M) (3.69)

For this to be true for all |[M) the element uf(R)u(pR) of SU(n) must also be a
phased permutation matrix. This gives us a condition on the map u(R) from the

configuration space to SU(n)
w(pR) = u(R){e® ..., "} D(p) (3.70)

Selecting a map u with this property also defines the operators U(R)).

We will now show that k = 2s for any operators U(R) with the required prop-
erties. This will involve the exchange of the first two particles pi2 using the fixed
exchange rotation exp(—inf). The permutation condition (3.64) can be written

as
UT(R)U (p1aR) exp(—in B2)M) = (~1)F 2 M) (3.71)
The related element of SU(n) is then

uf (R)u(p12R) exp(—z'7r8;2) =

10 -1 0 (3.72)

This is a diagonal element of SU(n) and so must be generated by the matrices E9
uf(R)u(p12R) exp(—in€,”) = exp(—i Y  c;;EY) (3.73)

ij
Therefore the eigenvalues of the state [M), for which we have the condition E,|M) =

0, are unity and consequently in the eigenvalue equation (3.71) k is 2s.
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We have yet to show that there actually exist maps u(R) from the configuration
space to SU(n) which have the property (3.70) and produce a smooth position-
dependent basis [M(R)) when n greater than two. This is the statement of the
problem reached in [8]. If such a map exists then using the Schwinger representation

of spin states
[PM(pR)) = (~1)*|M(R)) (3.74)

The spin-statistics connection then follows as in section 3.3.

3.7.1 Maps from configuration space to SU(n)

The existence of such a map is an interesting geometrical problem. In [2] [1] and
[3] Atiyah constructs a map with the required properties; however there are still
important unanswered questions which relate to an alternative more aesthetic con-

struction.

In the simplest but unproved construction u(R) is obtained by orthogonalising
an n x n matrix w(R) where the j’th column of w(R), w;(R), is associated with
particle j so the permutation condition (3.64) for the columns of the matrix is sat-

isfied.

The direction of the particle ¢ seen from j is #;;,

i (ri — ;) (3.75)

ey
Each of the n — 1 directions from the particle 7 can be described by its complex
stereographic coordinates, (;. A unit sphere is centred at r; and a line is drawn
from the south pole through the point where the line connecting particles 57 and ¢
intersects the sphere. The line from the south pole intersects the equatorial plane
of the sphere and the Cartesian coordinates of the point where it meets the plane
provide the real and imaginary parts of (;. The components of w;, wyg;, are the

coefficients of z in the polynomial

Fiz) = z=G) = - W, 3.76
o i:111—1( ) kzl:n V (k= Dl(n - k)! & (3.76)
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To orthogonalise the columns of w(R) the vectors w;(R) must be linearly indepen-
dent for all configurations R. This is surprisingly difficult to prove and to date it
hasn’t been done although numerical results for det w(R) are encouraging. It can
be proved for n = 2 or 3 and in some of the hard cases where it might be expected

to fail, for example when all the particles are in a line.

To construct a specific map which has the required properties Atiyah uses a
procedure which breaks the translational symmetry of the problem and fixes an
origin. The previous construction was independent of the origin used to define the
vectors rj in R. The construction follows a similar procedure to the more elegant
construction described previously. We also define polynomials Pj(z) but now the

values of j are distinguished.
(a) If rj| > [r;| then £;; = r;/|r;].

(b) If |rj| < |r;| then ¢;; is the second intersection of the line (r; — r;) with the

sphere of radius |r;|, see figure 3.1.

tij

Figure 3.1: The definition of #;; for |r;| < |r;

The complex stereographic coordinates of the directions ¢;; are again used to
define the polynomials. The construction is still compatible with the permutation
condition as permuting the coordinates r; alters the labels of the points but not the

geometry of the configuration which determines the polynomials.

In this construction of the map the polynomials P; can be shown to be linearly

independent. The proof is by induction on n. Take r, to be the vector of greatest
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magnitude, |ry| > |rj| for all j. Q1,...Qn—1 are the polynomials defined by the
smaller configuration (ry,...,r, 1) of degree n — 2 which we take to be linearly
independent. We choose the complex parameter on the sphere so that r, lies at
infinity. Then for j < n — 1 the polynomial of the n points is P; = Q;. While P,
is a polynomial of genuine degree n — 1 as none of its roots are infinite. Therefore
the set of polynomials Pi,..., P, is still linearly independent. The induction then

starts from the trivial case n = 2.

With a map from the configuration space of the particles to SU(n) which has
the required permutation properties the Schwinger construction of the position-
dependent spin basis can proceed. We have already seen that the exchange sign is
independent of the particular choice of map and will give the observed spin-statistics

relation.

3.7.2 Smoothness and parallel-transport for n particles

The parallel-transport of the position-dependent basis for two particles was demon-

strated using the condition

ER|M) =0 (3.77)
For the Schwinger representation of n spins we still have the condition

EY9|M) =0 (3.78)

and the same argument can be applied to show that the spin-basis is parallel trans-
ported. We see that this parallel transport condition is also independent of the

choice of map u(R) used in the construction.

For the position-dependent basis to be a smooth function of R the map u(R)
from configuration space to SU(n) must also be a smooth function of R up to mul-
tiplication on the right by a diagonal matrix. In the first construction the matrix
w is smooth up to multiplication of the columns by phase factors and so would

generate a smooth position-dependent basis. In the second construction the change
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between the two regimes as r; moves across the sphere of radius |r;| is not smooth.
The construction is still however continuous and can be made smooth so this is
only a technical problem. Given that we know a map u(R) exists which generates
a position-dependent basis with the required properties, 3.2.1-3.2.3, the exchange

sign of [IM(R)) is determined by the Schwinger representation of the spins.

3.8 Alternative constructions

Combining the Schwinger representation of spin with the map u(R) found by Atiyah
provides constructions of a position dependent spin basis for n particles with all the
required properties so that, in this framework, the singlevaluedness of the wavefunc-
tion requires that the system obey the spin-statistics theorem. In [9] BR consider
alternative constructions with the properties introduced in [8] which don’t produce

the physically correct spin-statistics relation.

The first alternative construction involves a change in representation of SU(2n).
The commutators for the creation and annihilation operators in the Schwinger rep-
resentation are replaced by anticommutators. Anticommutators imply that a? =0,
with similar relations for the other operators of the harmonic oscillators, so the rep-
resentation can only have a single quantum in each oscillator. This means that the

representation is limited to states of spin-1/2.

In this anticommuting Schwinger representation n spin-1/2 particles are repre-
sented by a distribution of n quanta between the oscillators with at most a single
quantum in each. The highest weight state of this representation will be the state
with the first n oscillators a1, b1, a9, ... filled. The weight of this state is the sum of
the first n weights of the anti-Schwinger representation with a single quantum. With
only a single quantum the anticommutation relations can’t affect the available states.
So the anticommuting Schwinger representation with a single quantum is isomor-
phic to the defining representation of SU(2n), which is the commuting Schwinger

representation with a single quantum. The sum of the first n maximal weights of the
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defining representation of SU(2n) is the definition of the n’th fundamental weight
and consequently the n spin-1/2 anti-Schwinger representation is isomorphic to the
representation of SU(2n) labelled by a Young tableau with a single column of n

boxes.

Calculations using the anti-Schwinger scheme show

[PM(pR)) = +M(R)) (3.79)

The wavefunctions on this basis will be symmetric under permutations. This is
bosonic behaviour for spin 1/2 particles, not the correct spin-statistics relation.
This alternative construction is an example of the generalisation we will investigate.
In this alternative construction the position-dependent basis has all the properties
required in 3.2. We therefore deduce that the spin-statistics connection depends on

the representation used for the spin states.

A second alternative construction is for two spin zero particles. In this case the

position-dependent spin basis is represented by the unit vector in the direction r

|M(r)) = /x| (3.80)

where only one vector, for example 2, corresponds to the spin vector |0,0) in the
normal representation of spin. When —r is substituted for r this position dependent

basis changes sign despite the integer spin. The wrong spin-statistics connection.

Both these alternative constructions of a spin-statistics connection are unsatis-
factory. They each apply to a single value of spin and in the second case only to
two particles. However they illustrate that the requirements introduced in section

3.2 are insufficient to derive the spin-statistics theorem on their own.
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3.9 Parastatistics

One interesting generalisation of the condition 3.2.2 that can be made is to allow
a set of states, labelled by an additional quantum number «, to represent both the
initial and permuted states. The position-dependent basis is then |M « (R)) and we

can take the fixed spin basis |[M «) to be orthonormal.
(M, 0/|1V[ Oé) = 6MM’5aa’ (3.81)
The permutation condition 3.2.2 is now

PMa (pR)) =) chy(R)M S (R)) (3.82)
B

and the parallel-transport condition 3.2.3 is
(M'd (R)IVMa(R))=0 (3.83)

Using these conditions we will derive the properties of the coefficients CZB(R).

From the orthogonality condition (3.81) we can write
(pM' o (pR)|pM a (pR)) = b0 Onrmrr (3.84)
Using the exchange condition this is

> T (R) s (R) (M 5 (pR)[M S (pR) = daar Sinr (3.85)
B'B
Applying the orthogonality of the states for a second time this reduces to an equation

for the coefficients,

> e sR) Ay (R) = door (3.86)
B

If we let C?(R) denote a matrix with elements ¢/ 5(R) then equation (3.86) is equiv-

alent to the matrix equation
C’I(R)CP(R) =1 (3.87)

The matrix of coefficients C”(R) is unitary.
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Using the permutation condition (3.82) we can write

(M o (pR)|V|pM ot (pR)) =
Y55 Gy (R)ch g (R) (M ' (R)|[VM 3 (R) (3.88)
+ X Gy (R) (Vs (R))(M' 8/ (R)IM B(R))

Applying the parallel transport condition (3.83) on both sides of the equation we
find

C*H(R)VCP(R) =0 (3.89)
As CP(R) is unitary this implies
VC?(R) =0 (3.90)
The matrix C”(R) is a constant and so is independent of R.
Taking the two permutations p and ¢ we will expand the state obtained by
applying both permutations to |M a(R)).

lpocM a(poR)) = CPlcM a(cR))

= C’C’|M «a(R)) (3.91)

From (3.82) the action of the combined permutation po is
lpcM a(poR)) = C*?|M a(R)) (3.92)

We see that the matrices C? define a representation of .
crce =g (3.93)

The representation acts on the additional quantum numbers «. Any representation
C(Sy) can be decomposed into a direct sum of irreducible representations. Taking
a spin state |Mry) in one of these irreducible representations then acting with U(R)
we obtain only other vectors in the irreducible representation. Each irreducible
subspace is invariant under the action of U. The position-dependent spin basis
decomposes into subspaces that transform according to the irreducible representa-

tions of S, in C. In this generalisation of the BR construction it is possible for the
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position-dependent basis to transform according to any irreducible representation of
Sp. Those subspaces transforming according to the higher dimensional representa-

tions exhibit parastatistics.

Changing condition 3.2.2 in the construction allows the position-dependent basis
to exhibit parastatistics. The same parastatistics will also be present in the wave-
functions defined on this basis. By noticing that parastatistics would be consistent
with the alternate condition (3.82) we do not in any way change the results for the
construction made using the Schwinger representation. In the Schwinger construc-
tion parastatistics is not present, the spin states can only transform according to
a one dimensional representations of the permutation group which ever version of

condition 3.2.2 we impose on the construction.

3.10 The components of the BR construction

To see how the construction can be generalised it will be useful to summarise the
essential ingredients that give the BR construction the properties required in section
3.2. This will also demonstrate why the anti-Schwinger construction is viable. Re-
calling section 3.2, the three requirements on the position-dependent basis are that

it is smooth, parallel-transports and under permutations of the positions and spins
[PMa (pR)) =3 c5(R)IM S (R)) (3.94)
B

This is the more general permutation condition that allows parastatistics. In the
previous section by combining (3.94) with the parallel-transport condition we found
that states of the position-dependent spin basis must transform under permutations

according to an irreducible representation of S,,, equation (3.92).

We will consider the construction of the position dependent basis using the ex-
change algebra of operators E¥. In order for the operator U(R) to generate a basis

that exchanges spins along with positions we saw that the related map u(R) from the
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configuration space of the n particles to SU(n) must have a permutation property,
u(pR) = w(R){e™, ..., e }D(p") (3.95)

Including parastatistics does not change this requirement. The map should also be
smooth up to multiplication by a diagonal matrix if the position-dependent basis is
to be smooth. Given such a map we want to be precise about the information used

to demonstrate that |[M(R)) has the three required properties.

For the position-dependent basis to be smooth we know already that the map
u(R) which defines U(R) must be smooth up to multiplication by a diagonal ma-
trix. Given the permutation condition on the map (3.95) multiplying U(pR)UT(R.)
by any fixed exchange rotation which permutes the spins produces an operator

exp(—i)_;; a(R)ijE:ﬁ;j). We have the condition on the spin states

EY|M) =0 (3.96)
This implies that
exp(—i Y a(R);EY)|M) = |M) (3.97)
ij

and there can be no extraneous phase introduced, the position-dependent basis is

smooth.

The argument for parallel transport is also based on the spin states |M) being
null states of the z components of the exchange algebra. As long as this is the case

the position-dependent basis parallel transports spins.

The permutation condition on the spin states in the position dependent basis is
satisfied given any map u(R) with the property (3.95). To demonstrate that the
exchange sign is topological, independent of the particular choice of u(R), we also
used the property (3.96) of the spin states. We now see that the success of the
construction is derived from two basic properties. Firstly the existence of a map
u(R) from configuration space to SU(n) with the required permutation property

and smooth up to multiplication by a diagonal matrix and secondly that the spin
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vectors where the n spins are equal are null states of the Cartan sub-algebra of the

exchange algebra, (3.96).

We can now see why the anti-Schwinger scheme is also possible. Changing the
commutation relations of the creation and annihilation operators does not effect
either of these basic properties of the construction. In fact we see that to produce a
position-dependent basis with the required properties we have not referred directly to
the Schwinger representation of the spin states at all. The Schwinger scheme provides
the necessary representation of the operators which form the su(2n) algebra from
which the exchange sign is calculated but a different representation of su(2n) could
still produce a satisfactory position-dependent basis. A representation 7'(SU(2n))
must simply include states |M) where the total spins of the n particles are equal

and where
T(EY) M) =0 (3.98)

Any map u(R) used to define a Schwinger construction will then apply equally well

to this alternative construction.

3.11 Summary

In this chapter we have seen that in order to generate a position-dependent spin
basis which exchanges spins along with positions, the algebra of spin operators can
be extended to included an algebra of exchange operators. Spin basis vectors are
now vectors in a representation of SU(2n). The permutations of spin with position
are generated by a map from the configuration space of the particles to SU(n) the
group generated by the exchange algebra. While explicit constructions of this map
exist, due to Berry and Robbins for n = 2,3 and Atiyah in the general case, the
properties of the position dependent basis under permutations are determined by
the representation of spin used and are the same for all maps with the required

properties.
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The position-dependent basis transforms under permutations of the particles
according to a representation of S,,. For the Schwinger spin basis this is the trivial
representation for particles of integer spin and the alternating representation for
half-integer spin. The transformation properties of the position-dependent basis
determine how a wavefunction transforms under permutations. Consequently for the
Schwinger scheme wavefunctions on the position dependent spin basis are required
to obey the spin-statistics theorem. In order for the position-dependent spin basis to
be smooth, parallel-transported and have the correct permutation property, the spin
basis vectors must have zero weight with respect to the Cartan sub-algebra of su(n).
Replacing the Schwinger representation with another representation of SU(2n) will
produce an alternative construction of the position dependent basis. It will have
all the required properties but may transform under a different representation of
Sy leading to the wrong spin-statistics relation, as occurs with the anti-Schwinger
construction. So we are led to the question, for a general representation of SU(2n)

what is the relationship between spin and statistics?

94



Chapter 4

Calculation of the exchange sign
for the irreducible

representations of SU(4)

In this chapter we will generalise the Berry-Robbins construction for two spinning
particles to find the exchange sign for irreducible representations of SU(4). This is
the simplest form of the construction, not only as it has the least particles but the
permutation group has only two irreducible representations. The elements of Sy are
I and (12), both form their own class, and the two irreducible representations are
the trivial representation and the alternating representation, both one dimensional.
In this straightforward case we expect to be able to directly assemble the various
spin bases |M) that the representations can act on. The position dependent basis
will be constructed in the same way as for the Schwinger representation, by a unitary
transformation generated by the exchange algebra. If this subspace transforms under
permutations of the particles as the trivial representation of Sy the particles are
behaving as bosons and the wavefunction is symmetric under exchange. Conversely,
spin vectors in a subspace transforming according to the alternating representation

of Sy are fermionic, their wavefunctions are antisymmetric under exchange.
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4.1 The group SU(4)

SU(4) is the group of 4 x 4 unitary matrices with determinant one. The generators
of the group can be defined in terms of the generators of the two spins and of the

exchange algebra as in equations (3.57) and (3.58).

o; 0O 0 O
Si= 3 ' Soi = :
0 O 0 oy
P 1 0 I e 1 0 —f (4.1)
T = 5 /5 Y= 55
22\ 1 0 22\ oo
e a1 0
2= 555
22\ o -1

o; are the Pauli matrices and [ is the 2 x 2 identity matrix. The commutators of
these matrices provide the remaining six generators in the algebra. A representation
of the group determines a representation of the generators. Let V' denote the carrier

space of the representation, the spin vectors |M) belong to V.

4.2 The spin subspace

In our discussion of the Schwinger representation in chapter 3 we saw that V is

composed of states
1) = (a])"er (af)™e2 (b])"0x (b5)™2|0) (4.2)

where the spins of the two particles may be different. Similarly for a general rep-
resentation only a subspace W of V' contains spin states that can be used in the

construction. Spin vectors, |M), in W have two properties;

4.2.1 |M) is an eigenvector of S? and S3 with the same value of total spin s for both

particles.

4.2.2 E,|M) = 0; that is, the spin vectors are zero weight states of the exchange alge-

bra. This ensures the position dependent basis is smooth, parallel-transported
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and that the exchange sign is topological.

These two conditions define the subspace W to which the Berry Robbins construc-
tion can be applied. As we showed in chapter 3 the properties of the position
dependent basis depend on the commutation relations of the generators, which are
a property of the algebra, and the conditions on the spin vectors |[M). The problem
now breaks down into two parts, finding W for a general representation of SU(4),
sections 4.3 and 4.4, and determining the exchange sign for a vector in W, section

4.5 and following.

4.3 Preparing the subspace W

An irreducible representation of SU(4) is labelled by three integers

f=(f1,/f2,/3)

These are the lengths of the rows of the corresponding Young tableau and we can
take f1 > fo > f3. A vector in an irreducible representation of SU(4) is constructed
by taking a tensor product of states of the defining representation of SU(4) and
applying a characteristic unit of the symmetric group generated by the tableau f.

We will construct vectors in the carrier space of f which belong to W.

4.3.1 Basis vectors of the tensor product representation

As in the discussion of su(4) in section 2.5.3 the basis vectors of the defining repre-

sentation are eigenvectors of the Cartan sub-algebra,

10 0 0 1 0 00

e L0100 5. L0100 ws)
V2 0 0 -1 0 210 0 00
00 0 -1 0 0 00
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0 00 O
110 00 O
82z = 5
0 01 0
0 00 -1
The eigenvectors
1 0 0 0
0 1 0 0
X1 = X9 = X3 = X4 = (44)
0 0 1 0
0 0 0 1
are labelled by weights (e,, s1,, s2,).
1 (1 1 2 _ (1 1
v: = (2—\/5,@0) ve = (Q—ﬁ,—gao) (4.5)
1/3 = (_ﬁa(%%) 1/4 = (_ﬁ70a_%)

The weight 7 labels the vector X;.

A basis vector of the tensor product of defining representations is a tensor prod-

uct of basis vectors from (4.4)
x':x]-®xl®---®xk (4.6)

We will use the notation N;(x') for the number of basis vectors x; used in x’ and

N (x') for the total number of terms in the tensor product.

4.3.2 Basis vectors of irreducible representations of SU(4)

To prepare a vector in the carrier space of f, the vectors x; in (4.6) are assigned to
boxes of the tableau f. The tensor product is symmetrised with respect to the terms
in the rows of the tableau and then antisymmetrised with respect to the columns.
This is the application of a primitive characteristic unit of Sy (/) to the tensor prod-

uct.
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For example if we take the representation (3, 1) of SU(4) we assemble vectors in

V from the tensor product of four basis vectors. Let
X =% 9% x2 Qx4 (4.7)

We assign these vectors to the tableau (3,1),

1] 4] 2]
4

Symmetrising with respect to the rows of the tableau produces

) [
+ [ [ )
S S S

NP

where the ket symbols remind us that the diagrams correspond to tensor prod-
ucts. The kets are labelled with an S to distinguish vectors to which have been
symmetrised with respect to the symbols in the rows of the tableau. Finally we

antisymmetrise with respect to the vectors in the columns

1 42> 42>+ 1 24> 24>
L4 AS As |4 As L AS
4] 1] 2] 1] 2] 2[1] 2[ 1]
+ B + =
= AS AS AS AS
14>+ 41> 41>
AS AS AS

2] 1]4]
+ | B —
4 A
The label A denotes that the vector has now been antisymmetrised with respect to

N

==

‘b »
‘-b N
‘-b S

o[~
o[~

N

S

the columns. The vectors in the central row cancel leaving

4] 2] 4] 4] 2] 1] 2] 4] 4] 2] 4]
> 1 + 4 |l
As | As | As | AS
1] 4] 4] 1] 4] 2] 4]1] 4] 4]1]
4] AS | 2] AS | 4] AS 2] AS

This is a basis vector of the representation (3,1) of SU(4). Alternatively the vector

NE

N

could be written as a linear combination of tensor products of the x;’s where each
term is a permutation of (4.7). By recording the vector using tableau we avoid spec-

ifying the order of the terms in the tensor product. Each box in the Young tableau
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corresponds to a particular term in the tensor product but as this correspondence

is arbitrary it is convenient to be able to suppress it.

4.3.3 Basis vectors of a representation of SU(2) x SU(2)

The SU(2) x SU(2) subgroup is generated by &; and 83. A representation of
SU(2) x SU(2) is defined by two representations of SU(2) each of which can be
labelled by a Young tableau. Vectors in a representation of SU(2) x SU(2) are the
tensor product of vectors of the two representations of SU(2). The basis vectors of
the defining representation of &, are x; and xs while x3 and x4 are a basis of Ss.
To record a vector in a representation of SU(2) x SU(2) using tableau we assign the

vectors x;1 or X9 to the first tableau and x3 or x4 to the second. For example

( 12)34)
2]

In this case both representations of SU(2) are spin one and the vector has si, =

[EnY

s9, = 0. To construct vectors in an irreducible representation of SU(2) x SU(2)
we apply the SU(2) symmetry conditions for both SU(2) tableau to a vector in the

tensor product representation.

4.3.4 s® s multiplets in representations of SU(4)

The unitary groups have been applied successfully to problems in particle physics
concerning the decomposition of a representation into irreducible components of
a subgroup of U(n). In [37] Itzykson and Nauenberg use Young tableau to de-
compose an irreducible representation of SU(m + n) into representations of the
SU(m) x SU(n) subgroup. This problem is related to finding the subspace W de-
fined previously. Applying their results to SU(4) D SU(2) x SU(2) gives the number
of s1 ® s2 multiplets in a representation of SU(4). The multiplets where the spin
eigenvalues are both equal form the subspace where the spins are the same, defined

in 4.2.1. This subspace contains W.
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Representations of SU(2) x SU(2) where both components have spin s are la-
belled by two SU(2) tableau both of which have 2s columns of length one.

a 25\ 25\

Columns of two boxes don’t affect the representation of SU(2) labelled by the
tableau, see section 2.6.4. Representations of SU(4) which, when restricted to the
SU(2) x SU(2) subgroup, contain this representation are those whose tableau appear
when the two tableau labelling the representation of SU(2) x SU(2) are multiplied.
Multiplying tableau, see section 2.9.1 for the rules, doesn’t change the total number
of boxes so the number of boxes in the representation of SU(4) is 4s 4 2a+ 2. This
is even and so only representations of SU(4) labelled by tableau f where |f| is even
can contain s ® s multiplets. This agrees with the known results for the Schwinger

representations which correspond to tableau with a single row of 4s boxes, as in 3.6.

We see that when constructing the subspace W we need only consider represen-
tations where |f| is even. Representations with |f| odd contain no multiplets where
the spins of the two particles are equal. If the same tableau f appears when two
pairs of tableau for different values of spin, s and s’, are multiplied then f has both

s' ® s’ and s ® s multiplets. This is a common situation, for example the tableau

]

appears in the product of both the tableau multiplications

X LI X L

Consequently the representation (4,2) of SU(4) contains s ® s multiplets for s = 1/2
and s = 3/2. We can see that a general representation of SU(4) is likely to be more
complex than the Schwinger scheme, selecting the representation of SU(4) will not
in general fix the value of spin and there may be many multiplets with the same

value of spin.
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4.3.5 Spin vectors with zero weight with respect to the exchange

algebra

Condition 4.2.2 used to define the subspace W requires vectors in W to be eigenvec-
tors of F, with eigenvalue zero. In the tensor product representation the generator
E, is represented by E!,
El= Y I®-®I”RIe--I (4.8)
all permutations
The sum is over all the possible positions of &, in the tensor product. Using (4.5)

we see that x’ is an eigenvector of E’, with eigenvalue

e, = %(Nl (%) + No(x) — N3(x') — Na(x)) (4.9)

Similarly x’ is also an eigenvector of S{, and S5, with eigenvalues

51, = %(Nl(x’) — Ny(x')) (4.10)

5y = %(Ng(x') — Ny()) (4.11)

From 4.3.2 a basis vector in an irreducible representation f of SU(4) is a linear
combination of vectors x’ all of which have the same weight (e,, s1,,82,). Conse-
quently such a basis vector of an irreducible representation of SU (4) also has weights
(4.9), (4.10) and (4.11), where N;(x') is the number of vectors x; used to prepare

the vector in V.

From (4.9) x’ is a null vector of E, if and only if,
Ny (x') + No(x') = N3(x') + Ny(x') (4.12)

This provides one condition on spin vectors |M) in W.

4.4 s® s multiplets with F, eigenvalue zero

An irreducible representation I'e(SU(4)) can be restricted to the subgroup SU(2) x
SU (2) generated by the spin operators. This representation I'¢(SU (2) x SU(2)) can
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then be decomposed into irreducible components,

Pe(SUR) x SU) = @ (Tapsne. (SU(2) x SU()) (4.13)

5§1,52,€z

An s1 ® so multiplet is labelled by a pair of tableau

o 2s; \ B 2s; \
a B

From section 4.3.3 and the eigenvalue equation (4.9) we see that the F, eigenvalue

of such a multiplet is

1
e, = ——=(281 +2a — 289 — 2 4.14
2 2\/5( 1 2 — 20) (4.14)

Each s; ® sy multiplet has a definite value of e,. The s; ® so multiplets are distin-

guished not only by the two spins but also by the eigenvalue of F,.

The number of SU(2) x SU(2) multiplets in a representation of SU(4) is the
frequency of the tableau f in the product of the two tableau labelling the multiplet.
Combining the condition (4.12) for the £, eigenvalue of the multiplet to be zero with
the condition that s; = so the multiplet is labelled by two tableau where a = (.
The number of representations I's ;o in the decomposition of a representation of f
is the number of tableau f in the product of the two identical tableau which label

the multiplet.

The tableau (2,1) labels a spin-1/2 irreducible representation of SU(2). So
vectors in an s ® s multiplet with spin-1/2 and E,-eigenvalue zero can, for example,

be labelled by a pair of (2,1) tableau

{ERdES)

Multiplying these tableau produces tableau with six boxes.

) [T,
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Each irreducible representations of SU(4) labelled by one of these tableau contains

when restricted to the SU(2) x SU(2) subgroup. In the example above the represen-

the representation

tations (3,1%) and (22,12) of SU(4) are equivalent to those labelled by the partitions
(2) and (1?) respectively. If a tableau appears more than once in the product then
this representation of the subgroup contains multiple copies of the representation
of I's s o when decomposed into its irreducible components. In our example (3,2, 1)

contains two s ® s multiplets with spin-1/2 and e, = 0.

4.4.1 Results for general multiplets

We will consider the general result of multiplying two identical tableau s with spin
s. As the lengths of the rows of this tableau could easily be confused with the
spins of the two particles we will distinguish the two cases with an extra label T'
for tableau. The partition s is then (s71, s72) and the spin of the representation of

SU (2) labelled by this partition is
1
s = i(STl — STQ) (4.15)
As s is a tableau we know that
ST1 Z ST12 (4.16)

The multiplication of two such tableau is written

St1 S11
\ a
I A N
St2 St2

Following the usual rules for multiplying Young tableau we label the boxes in the first

row of the second tableau with the symbol “a” and the second row of the tableau “b”.

A general result of such a multiplication can be written
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4.4. s ® s multiplets with E, eigenvalue zero

fa S11 ‘ a(a) ‘
f, s, | B@| 3(b)]
fs | v(@ | eb)

Where the a’s are in sections of length «, 8 and 7,
a+fB+v=sp1 (4.17)
Similarly the b’s are in the sections of length § and ¢,
0+e=579 (4.18)
The rows of the resultant tableau have lengths f1, fo and f3 respectively,

2(s71 + s12) = fi + fo + f3 = |f] (4.19)

|f| is the total number of boxes in the tableau. The general product tableau that we
are considering has only three rows. Multiplying two tableau of two rows it is possi-
ble, as we saw previously, to produce tableau with columns of four boxes. However
tableau with columns of four boxes label a representation of SU(4) equivalent to
that labelled by the tableau with the columns of four boxes removed. Considering
only the tableau with three rows is sufficient to provide results for all representations

of SU(4).

There are several rules used in the multiplication of Young tableau, section 2.9.1.
These produce conditions on the lengths of the sections of the resultant tableau.
Firstly the result of the multiplication must be a tableau, its rows decreasing in

length,

fi 2 fa 2 f3 (4.20)

Then when the boxes labelled with a’s are added to the first tableau they can not

be put on top of each other. This implies that

B < sri— s (4.21)

Y < sT2 (4.22)
As b’s also can’t be placed in the same column we obtain a forth condition

f3<sr+p (4.23)
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Counting right to left and top to bottom the number of a’s must always be greater
than or equal to the number of b’s. This provides two further conditions on the

lengths of the sections in our general product tableau.

e
IV
>

(4.24)

a+ B> sra (4.25)

Suppose that given tableau s and f there exists a set of variables «, 3,7, 9, ¢
which satisfy conditions (4.20) to (4.25) and so define one of the tableau of shape f

in the product s x s.

fi=sm+a (4.26)
fa=se+ B+ (4.27)
fa=d+e¢ (4.28)

We will define a procedure that changes the labelling of the boxes in f without
changing its shape. This will be referred to as procedure A. A moves a box labelled

b from the third row up to the second and a box a down from the second to the

third row.

g — B-1

0 — o0+1

(4.29)

v = v+1

e — -1
Schematically this is

A
I

We see that not only does A not change the length of the rows in f it also doesn’t
alter the total number of a’s or b’s in f. Applying A defines a second labelling of f.
To determine if this alternate labelling is a possible result of the tableau multipli-
cation we must check if the new variables «, 3',v',¢', ¢’ satisfy the conditions (4.20)

to (4.25). A and its inverse are the only such exchanges of boxes which can produce
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an alternative labelling of the boxes of the tableau which is also a possible result of

the multiplication of the two tableau.

To find the total number of tableau of shape f in the product s x s the idea is
to start from the tableau with the maximum number of b’s in the third row and
then count how many times A can be applied before the conditions for multiplying
tableau are violated. This will give the number of s ® s multiplets in the represen-

tation f of SU(4) with e, = 0.

¢ is the number of boxes labelled b in the third row of the tableau. First we
consider those conditions that restrict the maximum value of €. € can not be greater
than the length of the third row of £ by definition and it can contain at most all s7o
of the b’s. In order for £ to be a maximum J must be a minimum and so § must
also be maximum. Condition (4.21) determines the maximum value of 5. Collecting

these conditions

€

IN

f3 by definition

€ 5T2 maximum no. of b’s (4.30)

IN

e < sp1+ S92 — f2 max 3 from (4.21)

The maximum value of € is equivalently the minimum value of ~, the maximum
value of § or the minimum value of 3. There are five conditions which limit the

minimum value of .

e 20 by definition
e > [fz3— st from (4.22)
e > fz3—fat+s2 from (4.23 (4.31)

™
v

(4.23)
ST1 + 819 — f1 from (4.24)
(4.25)

)
v

fs+smo— f1 from

Every ¢ satisfying conditions (4.30) and (4.31) corresponds to an s ® s multiplet.
There are three possible maximum values of e defined by (4.30). The smallest of
these maximums is epax. Similarly the maximum of the five lower bounds on ¢
(4.31) is emin. The number of ¢ satisfying the conditions is then (eyax — €min + 1)-

To evaluate this we consider the fifteen combinations that result from combining
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each of the three upper bounds with each of the five lower bounds. These possible
values of (€max — Emin + 1) are enumerated in (4.32) below. Four of the combinations
are redundant as they are equivalent to other pairs. The variable f3 has also been

eliminated from the results using equation (4.19).

1) spo+1

2)  fi—fa+t1l

3)  fi—sm+1

4)  fi—2sm2+1

5) fa—sm2+1

6) st —sr2+1 (4.32)
7 fitfa—2sm1+1

8) st s2— fo+1

9)  fitfo—sr1— 2812+ 1

10)  fi+2f2— 2571 — 2572 +1

11) 2s71 + 2879 — f1 — fo+ 1
To find the number of s ® s multiplets in the representation f we find the minimum
of the eleven integers defined in (4.32). If this is negative or zero then there are no

such multiplets in f.

It is interesting to note that in fixing the representation of SU(4), even though
we do not fix the spin of the multiplets, we do determine whether their spins are
integer or half integer. Choosing f defines the number of boxes |f| in the tableau
and the number of boxes |s| = |f|/2 in the representations of the spins. Changing
the spin s involves moving boxes from the first row of s to the second. Moving a
single box in this manner changes the number of columns of one box by two which
changes the spin by an integer amount. Hence the spins of all multiplets in the

representation are either integer or half-integer.

4.4.2 Example: The s ® s multiplets of (7,5,2) with e, =0
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4.4. s ® s multiplets with E, eigenvalue zero

By choosing a tableau with a relatively large number of boxes and three rows we
expect to find several s ® s multiplets. As the number of boxes in the tableau is even
the representation will contain s ® s multiplets with F, eigenvalue zero. To produce
the tableau (7,5,2) the two tableau s that we will multiply must each contain seven
boxes. This translates to representations of SU(2) with half integer values of spin
between 7/2 and 1/2. We can take each value of spin in turn and evaluate the

integers (4.32) for these values of fi, fa, s71, s772.

Starting with spin-1/2, (s71 = 4, s72 = 3), evaluating the integers (4.32) we find

spe+1 =4

fi—fo+1=3

fi—sm+1=4

fi—=2sm2+1=2

fo—sra+1=3
sp1—sr2+1 =2 (4.33)

fitfo—2sm1+1=5

sT1+sr2—fao+1=3

fi+ fa—sri—2s724+1=3

fi+2fo—2sp1 — 2872 +1 =4

2sp1 4282 — fi— fa+1=3
The minimum of these integers is two so there are two spin-1/2 multiplets with
e, = 0 in the representation (7,5,2) of SU(4). Continuing this procedure we can fill
out a table, figure 4.1, showing the spin of the multiplets available for the construc-

tion of the position dependent basis.

Figure 4.1: The s ® s multiplets of the representation (7,5,2) of SU(4) with e, =0

multiplet spin | no. of multiplets
1/2 2
3/2 3
5/2 1
7/2 0
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4.5 The exchange sign

So far we have found the subspace of spin vectors W for which the construction
of the position-dependent spin basis is defined. As a representation of SU(4) can
contain many multiplets with different values of spin we will need to consider how
the basis vectors transform under the exchange of the spins in each of these different

multiplets.

The position-dependent basis is generated, as in the Schwinger scheme, by a
unitary operator U(r). The operator is defined using the same map u(r) from the
configuration space to the exchange subgroup SU(2) that was used for the Schwinger
representation. In chapter 3 we saw that the properties of the position-dependent
basis are independent of the particular form of this map which is chosen, providing
that it is smooth up to multiplication by a diagonal matrix of phases and has the

desired permutation property

u(pr2r) = u(r) (4.34)

For a general representation f of SU(4)
U(r) = Ce(u(r)) (4.35)

As with the Schwinger representation the sign change of vectors in the position-
dependent basis generated by U(r) determines the sign of the wavefunction under
the exchange of the particles. Consequently evaluating the exchange sign for spin
vectors in a multiplet determines the statistics of wavefunctions on the position-

dependent basis constructed from it.

4.5.1 Defining a fixed exchange rotation

In the Berry-Robbins construction the exchange sign is independent of the choice
of u(r). This topological property of the position-dependent spin basis allows us

to evaluate the exchange sign using a fixed exchange rotation. We can use the
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same exchange rotation as was used to investigate the properties of the Schwinger

representation, exp(—im&y).

00 -1 0

, 00 0 -1
exp(—in&y) = (4.36)

1 0 0 0

01 0 0

This is an element of the SU(2) exchange subgroup of SU(4). Given any irreducible
representation I'r of SU(4) the element exp(—in&,) defines an exchange rotation

which permutes the two spins.
Te(exp(—im&y))| M) = (—1)*|M) (4.37)

where |M) is a vector in the subspace W. For two particles there is no possibility
of parastatistics as both irreducible representations of the permutation group So are

one-dimensional. To evaluate the exchange sign we want to calculate
(M|Te (exp(=in&, )| M) = (~1)* (4.38)

for spin vectors in W.

In the defining representation of SU(4) the exchange rotation exp(—in&,) acts

on the basis vectors x; transforming them accordingly.

X1 — X3 Xo — X4

X3 — —X1 X4 — —X2

In the tensor product representation the exchange rotation is generated by Eg’/7

By = Y I®--RI0eI®--1 (4.39)

all permutations

Using this generator our exchange rotation in the tensor product representation is
exp(—imE,) = exp(—in&y) ® exp(—in&,) ® - - ® exp(—inE,) (4.40)

We can see how this exchange rotation acts on a basis vector x’ in the representa-

tion. The vectors x; in X’ are replaced with x3’s and x5’s with x4’s and vice versa.
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The operator also introduces a sign factor (—1)N3(x')+N4(x’).

Vectors in an irreducible representation f of SU(4) are generated by apply-
ing the symmetry conditions of the tableau f to a vector x' in the tensor prod-
uct representation. For vectors in the subspace W we have already seen that
Ni(x") + Na(x') = N3(x') + Ny(x") where the total number of terms in the product
is |f|. Operating on a vector with I'¢(exp(—in&y)) is equivalent to operating on
the vector x’ in the tensor product representation with exp(—iﬁEl’/) then applying
the symmetry conditions of the tableau f to the result. We see that vectors in the

subspace W acquire a sign (—1)f1/2,

This sign factor does not on its own determine the exchange sign. For example,

consider the vector
X1 @x3 —X3QX1

This is invariant under the operator exp(—imE,); however the sign factor (—1)If1/2 g
—1. The symmetry conditions recorded in the tableau f also play an important role.
We can however separate the two contributions determining the affect of exchanging
x1 <> x3 and X2 <> x4 then including the sign factor (—1)‘f|/2.

The sign (—1)f1/2 can be put into a more familiar form using the conditions on
f for it to contain an s ® s multiplet with e, = 0. In section 4.4.1 we had condition

(4.19)
If| = 2(s71 + s72) = 2(2s + 25772) (4.41)
s792 18 an integer but s can be half integer therefore
(_1)\f| =(-1)* (4.42)

This phase factor is reminiscent of the correct spin-statistics connection and forms
the first component in our evaluation of the exchange sign for spin vectors in a gen-

eral representation of SU(4).
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4.5.2 Selecting a vector |M)

We have simplified the problem by considering only a single exchange rotation
exp(—in&,y). To simplify it further we will specify a particular vector |M) in each

multiplet for which we will determine the exchange sign.

Any spin vector |M) can be written as a series of spin lowering operators S;_ and
Sy acting on the highest weight state of the representation of SU(2) x SU(2). The
effect of the exchange rotation on these operators can be determined entirely from
the commutation relations of the operators. For simplicity if we use the defining

representation of su(4) we know that

0 —-I
exp(—in&y) = (4.43)
I 0
and the spin lowering operators are
S_ 0 0 0
Si- = So_ = (4.44)
0 0 0 S

where all the matrices have been written in 2 x 2 blocks. Conjugating S;_ by

exp(—in&,) we obtain the result
exp(—in€,)S1—{exp(—in&,)} 1 = Sa- (4.45)

This is as expected, changing the z component of spin of one of the particles doesn’t
change the exchange sign. The exchange rotation simply swaps the particle that the
spin lowering operator acts on. As our choice of z component of spin for the two
particles doesn’t effect the exchange sign we will choose the spins of both particles
to have maximum z component, s. This spin vector is the highest weight state of
the representation of SU(2) x SU(2) and so is unique. By choosing this state to
evaluate (4.38) we know that

) = | M) (4.46)

which further simplifies the calculation.
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4.5.3 Constructing the highest weight state of a multiplet using

Young tableau

In sections 4.3.2 and following we constructed basis vectors in irreducible represen-
tations of SU(4) and SU(2) x SU(2) using Young tableau. To construct the highest
weight state of an irreducible representation of SU(2) x SU(2) we take a pair of
tableau labelling the representation of SU(2) x SU(2). Then basis vectors x; of the
defining representation are assigned to the first row of the first tableau, x5 to the
second row of the first tableau, x3 to the first row of the second tableau and x4 to

the second row.

=)

The tableau is symmetrised with respect to the vectors in the same row, which is
trivial in this case, then antisymmetrised with respect to vectors in the same col-
umn. The tableau represents the highest weight vector as it contains the maximum
number of vectors x; and x3, antisymmetrising columns containing the same symbol

would produce zero.

For example the highest weight state of a spin-1/2 multiplet with e, = 0 can be

1/ 1] | 3] 3]
2] 14

Applying the symmetry conditions of the two SU(2) tableau we have the linear

written

combination of tensor products, written

1/1] |3 3> 2/1] |3 3>
J - J
2l 4 s LY A s

1] 1] 3] 2] 1] |4]3]
o B 5P
As L= = /as

4
2| [3]
Each box in the pair of tableau corresponds to a position in the tensor product of

six basis vectors of the defining representation.
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We want to find the highest weight state of an s ® s multiplet with e, = 0
in a representation f of SU(4). This involves applying the symmetry conditions f
associated with the multiplet to the highest weight vector of the representation of
SU(2) x SU(2) we defined previously. The symmetry conditions associated with
the multiplet are found by multiplying the pairs of tableau in the highest weight
state of the representation of SU(2) x SU(2). We will demonstrate the procedure

by continuing the example above discussing more generally what is going on.

In the multiplication of two tableau (2,1) we find the representation (3,2,1)

appears twice in the result with the two alternative labelling

a1 Y]
a by
by &

Each labelling corresponds to a different multiplet. If we take the first labelling
and apply those symmetry conditions to the highest weight state of the spin-1/2
representation of SU(2) x SU(2) we find

1/1]3 2|1]3 1] 1] 4] 2| 1] 4
23] — 13 —[2[3 4 1|3
| 4] 4] 3] 3]

The symmetry conditions of the tableau (3,2, 1) labelling the irreducible represen-
tation of SU(4) can now be applied to this vector. First the rows in each tableau

are symmetrised
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States are multiplied by a factor of two when two different permutations of the sym-
bols in the same row lead to the same labelling of the tableau. To simplify the result
all the tableau with two identical symbols in the same column which would vanish

when the columns are antisymmetrised have been omitted.

We could now antisymmetrise the tableau with respect to the symbols in the
same column however it would produce pages of tableau which can be avoided. If
two of the tableau above contain the same symbols in their columns then they will
both produce the same set of tableau when antisymmetrised. However the two sets
of tableau could differ by a sign. To determine this sign we can compare the two
tableau and to see whether an even or odd permutation must be used to rearrange

one tableau into the other. For example the two tableau

1] 3]
3

1] 3]
3

NNE

SO

both produce the same set of tableau when antisymmetrised but with opposite signs
as a single exchange of the first two symbols in the first column transforms the

second tableau into the first. Using this we can collect tableau that are related by
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column permutations without antisymmetrising and writing the results out in full.

In our example collecting tableau we are left with

1[1] 3] 3[1]1] 1[1]3
323 + 3//2]3 + 332
4] S 4] S 4] S
2] 4] 1] 4)1] 2] 2[1]4
+3/[1]3 -+ 3/[1]3 -+ 3|[1]3
S s S s S s

where the full vector is still found by antisymmetrising the columns. Leaving the
vector in this form is sufficient to compare pairs of vectors as we will do later. We
have constructed a highest weight vector of the s ® s multiplets with spin-1/2 in the
representation (321) of SU(4).

With this picture of the procedure the properties of a general construction of
the highest weight vector of a multiplet are clearer. A state created by applying
first the (s,s) symmetry conditions of the SU(2) x SU(2) multiplet followed by the
symmetry conditions f of SU(4) is a vector in the representation f of SU(4) as it
is a linear combination of basis vectors of the representation f. It is also a highest
weight state of the SU(2) x SU(2) subgroup as applying a spin raising operator S
or Soy will produce zero, consider applying the raising operator to the state before
the symmetry conditions f are applied. The multiplication of the two tableau gives

a set of linearly independent ways of combining the symmetry conditions.

4.5.4 The effect of the symmetry conditions on the exchange sign

The exchange rotation exp(—inZ’/) changes vectors x; to x3, X2 to x4 and vice
versa. It also multiplies a vector |M) by the sign factor (—1)?*. For the highest
weight vector of an s ® s multiplet with e, = 0 exchanging the spins doesn’t change

the vector. So from (4.38) the exchange sign is
(=1)% = (M|T¢(exp(—in€y))| M) (4.47)
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To determine the effect of the symmetry conditions on the exchange sign we will
compare the phase of the highest weight state of an appropriate multiplet with the

state where the vectors x; are replaced with x3, x9 with x4 and vice versa.

To make this clear we can return to our previous example. We will write the
tableau recording the highest weight state of the s ® s multiplet as a column on the
left. The tableau on the right are those where the vectors have been exchanged,

X1 & X3, X2 & X4.

1113 3/131
2|3 4|1
4 2
— S — S
3/1/1 1133
2|3 4|1
4 2
— S — S

‘I\Jl—\m
N

NEE
Y
w

U)\/

‘(AJHI\J

Wb

i
U)\/

[Ha]=
=N
w

4112 2|34
13 3|1

1
El s - s
214 4|32
13 3|1
3 1

The arrows connect tableau related by column permutations of the symbols. We
can see that the two columns record the same vector as the column permutations
that relate the connected tableau are all even. If the permutation required in each
case was odd the symmetry conditions would contribute an extra factor of (—1) to

the exchange sign.

It is this principle of comparing the highest weight state of the multiplet to
the state where the symbols have been exchanged that we will use to evaluate this
second contribution to the exchange sign from the symmetry conditions of the Young

tableau.
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4.5.5 Evaluating the effect of the symmetry conditions for a general

highest weight state

A general highest weight state is generated by a general tableau which is itself
obtained by filling in the result of the product of two tableau s with the symbols 1

to 4. From section 4.4.1 such a general tableau is

fy s () a3
f,] s |BE) 3@ (4.48)
fs v | @

To this tableau the symmetry conditions of the (s, s) tableau are applied permuting
1’s with 2’s, 3’s with 4’s. Then the symmetry conditions of the whole tableau f are

applied to form the highest weight vector.

The highest weight vectors generated in this manner span the space of highest
weight vectors with e, = 0 for the given spin s. We will show that each vector
contains the state labelled by the tableau (4.48) from which the vector is generated.
This sounds obvious but will prove useful later. The identity permutation is con-
tained in both sets of symmetry conditions so the question is could the same tableau
appear with the opposite sign as the result of a different set of permutations. This is
not possible as a sign change introduced in the (s,s) symmetry conditions must be
undone with a second antisymmetric permutation to return to the original tableau.

The (s,s) symmetry conditions always permute symbols in different rows.

If we consider our previous example applying the (s,s) symmetry conditions

1] 3] 1] 3]

% DI R

NN
w

NEE
w

AS

Then applying the symmetry conditions of the tableau (3,2,1) we return to the

original tableau with no change in sign.

1] 3]

Iy
w

BEE
w

‘-bl\)l—\
w

AS AS

119



Chapter 4. Calculation of the exchange sign for the irreducible representations of
SU(4)

The highest weight vector contains the state labelled by the tableau used to generate

the vector.

The vector generated by (4.48) also includes the state labelled by the exchanged

tableau where the symbols 1 and 2 have been swapped with 3 and 4,

sr (3 Lo (D)
s (4) [ B[ 3] (4.49)
y() @ AS

To show that this is a possible result of the application of the two sets of symmetry
conditions we must show there exists a set of permutations which applied to (4.48)
will produce the tableau (4.49). We can also find the sign of the exchanged tableau

in the vector by counting the column permutations used.

Starting from the tableau

st (1) a3
sz (2 [ BP)| 3@)
y(d | £@

we will assume that the identity permutation is chosen from the symmetry condi-
tions of (s, s). We now split the argument for the symmetry conditions of the tableau

f into two parts.

If the sections # and ¢ don’t overlap (fs < s72) the permutations necessary to
produce (4.49) are straightforward. Starting with the row permutations the a 3’s
in the first row must be swapped with 1’s from the first row, this is a symmetric
permutation so there is no change in sign. The § 4’s in the second row are also
exchanged symmetrically with 2’s in the second row. All the other terms must be
exchanged antisymmetrically using column permutations. The § 3’s in the second
row are swapped with 1’s in the top row, a sign change of (—1)?. Similarly the vy 3’s
are also swapped antisymmetrically, a sign change of (—1)” and the ¢ 4’s are swapped
with 2’s in the second row, a sign change of (—1)°. Combining these contributions

the sign of the state (4.49) in the vector generated by the tableau (4.48) is

(—1)P+re (4.50)
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If the sections 0§ and € overlap the exchange of the symbols is more complex
as some symbols must be moved twice. In the overlapping section we start with

columns of

The 4 must be swapped with a 2 but there are no 2’s in the same row or column. To
accomplish the exchange we pair this column with one of the columns of three boxes
that is not in the overlapping section. This can always be done as the maximum
length of € is spo the length of the section containing 2’s. To exchange the symbols

in this pair of columns we proceed as follows

First the positions of the two columns are exchanged. Swapping symbols in the
same row does not introduce a sign change. Then using the antisymmetric column

permutations

The combined permutation of both columus is even so again there is no sign change.

The remaining symbols not involved in these pairs of columns are exchanged as
in the first case. As the overlapping region has length f35 — sy the sign of the state
(4.49) in the vector generated by the tableau (4.48) is

(=1)ftrtr=3(fs—s72) (4.51)

If we consider the alternative vector constructed from the tableau with one less
4 in the third row we can compare the sign of the states labelled by the exchanged
tableau in the two cases. To be completely transparent we are comparing the signs of
the two different states labelled by the two different exchanged tableau each defined

from the tableau used to construct the respective vectors. Earlier we referred to the
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SU(4)

procedure relating the tableau used to construct two such vectors as procedure A,

(4.29), where A sends

g — p-1
6 — O0+1
v = v+1

e — -1

Applying A adds one to y and subtracts one from ( and ¢ so
(1)) (1) (BHr+e)-t (4.52)

For both cases (4.50) and (4.51) the sign of the vectors labelled by the exchanged

tableau alternates between vectors generated by tableau related by A.

Let us proceed for the moment as if the vectors generated by such tableau were
eigenvectors of the exchange operation exp(—imk,), as we will discuss below in
general they are not. Given a vector |M) generated by symmetry conditions (s, s)

and f we have

sn()  [a@) sn (3  [a@)
exp(-inE )| | s QBB 5@ )= (D**| s @]|BQ)] 5 (4.53)
y(3) £ y ()] £

where the vector is labelled by the tableau to which the symmetry conditions will
be applied to generate the vector. For an eigenvector of the exchange operation our

previous results show that either

su(@  [a@) su(® o)
sr2 (2| B(3)] 5(4)] — ()P s (@] B)] 52 (4.54)
y (3] €@ y()] £

if f3 < sy or

sn(@  [a@)] sn(®  [a@)
sz QBB 34 — () Prvrerdte) [sn, ()] B ()] 3(2)] (4.55)
y (3 £@ vy £@

for fs3 > sr9. Substituting these results into (4.53) we can evaluate equation (4.47)

to obtain the exchange sign.

_1)25+(B++9) for fy < s
(—l)k _ ( ) f3 = 9772 (4.56)
(_1)25+(5+7+5)*3(f3*5712) for f3 > s79
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for eigenvectors of the exchange operator.

Using the relationship (4.52) the exchange sign (4.56) alternates between vectors

generated by tableau related by A. Consequently

N, =N, N, + N, even
IN,—N,|=1 N,+N,odd

(4.57)

where N, is the number of multiplets with exchange sign of +1 and N, is the number
with exchange sign —1. Half of the spin multiplets transform with each exchange

sign.

This would amount to a derivation of the exchange sign if the vectors generated
by the tableau (4.48) were eigenvectors of the exchange operator, this is not neces-
sarily the case. We can define a set of eigenvectors of the exchange operator that will
have the correct exchange signs. However the problem is then to show that these
vectors are linearly independent. If they are linearly independent we have found the

dimension of the subspaces of W with each exchange sign.

Let us start instead with the vector generated by the exchanged tableau

su(d  [a(@)
s, (4] B ()] 3] (4.58)
Yy £@

then applying the same argument that we used on the vector generated by (4.48)

we see that the vector contains a state labelled by the original tableau (4.48) and
the sign of this state is the same as the sign we calculated in the reversed situation.
If the sign of the vector labelled by the exchanged tableau is 1 then we can take

the linear combination of vectors generated by the two tableau

sn(®  [a@) 4+ su(®  Ja@)
sz Q] B 3(9) il stz @] B )] 32 (4.59)
y (3 @ vy £

The vector generated by acting on this combination of tableau with both sets of sym-
metry conditions (s,s) and f is not zero as it must include vectors labelled by both

the original and exchanged tableau. It is also clearly an eigenvector of exp(—inFE})
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with eigenvalue (£1)(—1)2%. If there are N multiplets then this procedure defines
N highest weight vectors half with each exchange sign. However these vectors could

be linearly dependent.

One way to prove that the exchange signs of the multiplets are determined by
the signs calculated previously would be to show that these vectors generated by
(4.59) are linearly independent. If there is only a single multiplet with spin-s then
there is nothing to prove and we have determined the exchange sign of the multi-
plet. For two multiplets with spin-s the two highest weight vectors generated by
tableau (4.59) will have different exchange signs so they are linearly independent.
Consequently all pairs of s ® s multiplets with e, = 0 will consist of one with each

exchange sign.

Tableau where f3 = 0 can contain at most one multiplet with each spin s, to
see this consider applying A to such a tableau. So we have found the exchange
signs of multiplets in a representation of SU(4) labelled by a tableau with two rows.
For tableau with three row if f3 < s79 we can show that the vectors generated by
(4.59) are linearly independent. Take the vector (4.59) after applying the symmetry
conditions (s,s) and f it must contain a tensor product labelled by the original

tableau which has € columns

It is impossible for tensor products in the state to be labelled by tableau with more

columns of 1,2,4. To see this consider the diagram (f3 < s72)

fa sn (1) a(3)]
f,| s [BO) 3@
f2 | y(3)] £(4)

Using the (s,s) symmetry conditions the 4’s can only be exchanged with 3’s in a
higher row which will reduce the number of 4’s in the third row. Applying the sym-
metry conditions f 4’s in the first or second row must undergo a row permutation

with a 2 or 1 to increase the number of columns of three boxes containing 4’s. This
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prohibits the column created also containing both a 1 and 2 along with the 4.

The same argument can be applied to the vectors generated by the tableau where
1’s and 3’s and 2’s and 4’s have been exchanged to show that again the maximum
number of 1,2,4 columns is . We can now see how to show the vectors (4.59) are
linearly independent. The vector generated by tableau with the maximum number
of 4’s in the third row, enay, is linearly independent of the other vectors as other
vectors can not contain as many columns of 1,2,4. The procedure can now be it-
erated to show that the vector generated by tableau with € = epa — m columns
of 1,2,4 is independent of the vectors generated by tableau where € = e, — k for
k > m. This proves the vectors (4.59) are linearly independent for f3 < sr9 and con-

sequently the exchange signs for these multiplets obey the relations (4.56) and (4.57).

As yet T have been unable to verify that the vectors (4.59) are linearly inde-
pendent for tableau with f3 > sp9. For these vectors it is possible to increase the
number of columns of 1,2,4 but only to a limited extent. It therefore seems likely

that these vectors are linearly independent despite the difficulty in proving it.

4.6 Numerical calculation of the exchange sign

To verify our results for the number of s ® s multiplets with e, = 0, (4.32), and the
exchange sign of the multiplets, (4.56) and (4.57), we can calculate these properties
numerically for the irreducible representations of SU(4) of low dimension. To do this
we construct projectors onto a subspace of the representation f. For a diagonalisable
matrix A with eigenvalues \; the projector onto the subspace with eigenvalue ); is

P;.

7 A= NI)
P, = ]1;[ o) (4.60)

We must now consider the distinguishing properties of the subspace we will project

onto.
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From 4.2.1 the subspace must have equal spin eigenvalues for the two spins,
s1 = s9 = s and the condition 4.2.2 restricts to a subspace with e, = 0. Of the
vectors in W we will project onto a subspace of highest weight vectors of the rep-
resentation of SU(2) x SU(2) where the z components of the spins are maximal,
S1z = S2, = s. This subspace is spanned by eigenvectors of the exchange rotation
exp(—imL,) with eigenvalues £1. By projecting onto the subspace with one of these
eigenvalues we can determine the number of multiplets with each exchange sign in

the representation of SU (4).

The trace of a product of projection matrices is the dimension of the subspace
they project onto. Using this we multiply the matrices defined by the symmetry
conditions of a Young tableau, which project onto a subspace with those symmetry
conditions, and the projectors onto a subspace where

e, =0
S1; = 82, = 8 (4.61)

s? = 52 =s(s+1)

Taking the trace of this matrix we find the number of s ® s multiplets with e, eigen-
value zero. This product of projectors is multiplied by the projector of the exchange
rotation onto the subspace with exchange sign +1. Taking the trace again we find
the number of multiplets with this exchange sign. By comparing to the results using
the projector of the exchange rotation onto the subspace with exchange sign —1
we can verify that the remaining spin multiplets do have the alternate sign under

exchange.

The results of the numerical calculations made by following this scheme using
MATLAB are displayed in figures 4.2 and 4.3. The representation of SU(4) is la-
belled with the appropriate tableau and the spins of the physical multiplets in the

representation are given along with their exchange sign.

Before discussing the results it is worth commenting on some of the technical
problems that limit such calculations. Although the representations of SU(4) ap-

pear simple the size of the matrices in the tensor product representation is 4/fl. To
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Young Tableau ‘ Multiplet Spin ‘ Exchange Sign ‘

[TTT] 1 +1

[ ] 1 ~1
+1

1 +1

0 1

Figure 4.2: Numerical results for representations of SU(4) labelled by Young tableau
with four boxes

continue the calculation to include the representations labelled by tableau with eight
boxes would requires the manipulation of matrices of dimension 65536. There is also
an approximately factorial increase in the number of permutation matrices that are
required to define the symmetry conditions, the order of the permutation group on
|f| symbols is |f|! but not all permutations are required for each set of symmetry
conditions. The combination of these problems limited calculations to |f| = 4 or
6. To obtain further results the programs could be improved or computing power
increased. In particular an efficient algorithm for calculating the permutation ma-
trices is likely to make a significant impact. However even with these improvements
the difficulty still grows rapidly with |f| and obtaining results for tableau of higher

dimensions is difficult.

These results for representations of low dimension all agree with the analytic
results. Both the number and exchange sign of the multiplets are as predicted. The

most interesting case is probably the representation
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‘ Young Tableau ‘ Multiplet Spin ‘ Exchange Sign ‘

[TTTTT] 3/2 -1
mmm ) I .

[ ] 1/2 -1

3/2 -1

1/2 +1

3/2 +1

| ] 1/2 +1
1/2 +1

1/2 -1

1/2 -1

Figure 4.3: Numerical results for representations of SU(4) labelled by Young tableau
with six boxes
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which is the lowest dimensional representation to contain two multiplets with the
same spin. We see that the numerics confirm the prediction that the multiplets will

have different exchange signs despite belonging to the same representation.
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Chapter 5

Character decomposition of

SU(2n)

The subspace of spin vectors |M) that can be used to construct the position-
dependent basis corresponds to vectors in particular representations of a subgroup
H of SU(2n). The representation of H from which a vector |M) is selected deter-
mines the spin s of the particles and how the vector transforms under permutations.
In order to assemble these physical representations to be used in the Berry-Robbins
construction we first consider the group of inner automorphisms of the maximal
torus of the exchange rotations, the Weyl group, and determine its action on spin
vectors |M). Both the Weyl group and # are formulated in terms of the semidirect
product which is not necessary but provides a general perspective on the calculation.
To find the number of subspaces which correspond to physical representations of the

subgroup H we use the character orthogonality relations.

5.1 Character decompositions

A representation of a group G can be restricted to elements of a subgroup H. This
representation of H will in general be reducible. We define x g to be the character
of an irreducible representation of H and X the character of the representation of

G. Then the number of irreducible representations corresponding to the character

130



5.1. Character decompositions

x g in the representation of G is given by
1 _
X _
Ny = a ;QAXG(hA)XH(h,\) (5.1)

where A\ parameterises the classes of H and h) is an element of H in the class \. §2)
is the order of the class A and 2z the order of H. This decomposition follows from
the character orthogonality relations, which are discussed in more detail in section

2.3.

The character orthogonality described in equation (5.1) assumes that the group
is finite. However we will see that the subgroup # is continuous. For a compact Lie

group the sum becomes an integral and the character decomposition looks like

S / X () (h) () (5.2)

where p(h) is the Haar measure on H.

We have seen previously that to be used in the Berry-Robbins construction
vectors |M) in the carrier space of the representation of SU(2n) must have certain

properties;
5.1.1 |M) must be an eigenvector of S? with eigenvalue s for all n spins.
5.1.1 |M) must be a null state of the z components of the exchange algebra EY.

Only certain representations of H will correspond to vectors with these properties,
we will refer to these as the physical representations of 7. In order to use the
character orthogonality relations to find the number of physical representations of
H in SU(2n) we must find the classes and characters of . We will also require the
character of the representation of SU(2n) for elements in the subgroup H. With
these components we can integrate the product of characters over the subgroup to
find the number of physical representations of H that an irreducible representation

of SU(2n) contains.
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5.2 The semidirect product

For SU(2n) the action of the Weyl group can be conveniently described using the
semidirect product. If we take two groups G and H where G acts on H as a group

of automorphisms
®,: H<«+ H;h— hy (5.3)

Then the semidirect product, G x H, is the group with elements (g,h) and the

multiplication law

(g9, h)(g",h") = (99', hhy) (5.4)

The identity element of G x H is (I, If). From the multiplication law (5.4) we find
that

(g.0) " = (g~ k) (5.5)

5.2.1 Classes of G x H

All elements in the class of an element (¢’, h’) of G x H can be found by conjugating

(¢',h') by an element (g, h) of the group.

(9:0)(g" h) (g, h) ™ = (99'g™", hhigh 1) = (9", 1) (5.6)

Elements (¢"”,h") in the class of (¢',h’) are defined by an element ¢” of G in the
same class of G as ¢’. The elements h” that can be obtained by conjugation are

restricted to those of the form hh;h;,}.

5.2.2 Irreducible representations of G x H

First we determine how G acts on irreducible representations of H. Let {(D%, W,)}
denote a complete set of inequivalent unitary irreducible representations D*(H)

acting on vector spaces W,. Given (D% W,) let

Dg(h) = D%(hy) (5.7)
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It is easy to check that Dg(h) is a representation of H, it is irreducible and acts
on the space W,. Consequently (Dg,W,) is equivalent to one of the irreducible
representations (D7, W3) and to denote this instead of 5 we will use ay. Given g

there exists a unitary transformation
A%(g) : Wo = Wa,
such that
D*(hg) = A%(g)D* (h)(A%(g)) (5.8)

Therefore G acts on the set of irreducible representations of H, {(D% W,)}, by
sending « to ay. The stabiliser of the representation « is a subgroup of G denoted

Go.
Go={re€G:a; =a} (5.9)
For z € Go, A%(z) is a unitary transformation on W, and
D%(hg) = A% () D (h)(A%(z)) ™" (5.10)

We now turn to consider an irreducible representation U of G X H acting on
the carrier space V. We can restrict the representation U to the subgroup H and
decompose V into orthogonal subspaces which transform according to an irreducible

representation of H labelled by «.

V=Va (5.11)

If we select a particular subspace V,, which carries the o’th representation of H with

multiplicity r then we can choose an orthonormal basis for V,,
i)

where j runs from 1 to d, the dimension of the representation « and y runs from 1

to r. In this basis
U(h)|jp) = Di;(h)|ku) (5.12)
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so U(h) is block diagonal in this basis and each block is D%(h) an irreducible repre-

sentation of H.

For z € G, the representation U(x) leaves V, invariant.

U(@)|jp) = Chw,jul@)|kr) (5.13)

The coeflicients 'y, ;,(«) factorise. To see this we start by using the group multi-

plication law.
U(z)U(h) = U(hg)U(z) (5.14)
Applying this to the state |ju) we obtain
Puvyea(®) D (W) 1) = Dy () Doy ()i (5.15)
Equating coeflicients and using equation (5.10) we get
la

Tiv,kp(2) Dy (h) = Af, DGy (h) (Af (€)™ Thyj() (5.16)

To simplify this relation we can think of the coefficients 'y, j, as defining a d,-

dimensional matrix parameterised by the indices p and v,
Phwju(z) = A (@) (5.17)
so AWM (z) is a matrix. Writing (5.16) as a matrix equation we have
AW () D (h) = A% (@) D*(h) (A% (x)) AV () (5.18)
Solving this we obtain
[(A%(2) 7" AV ()| D (h) = D*(R)[(A%(z)) 7' AWM (2)] (5.19)

Schur’s lemma, implies that the matrix in the square brackets is a multiple of the

identity.
(A%(z)) LAV (z) = ¢, (z) T (5.20)
Returning to the index notation

Lyjk () = cu(z) Afy () (5.21)
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This is in effect the definition of the tensor product
r=A*C (5.22)

where C is the matrix with components c,,. This shows that the coefficients I’

factorise.

We are now interested in the properties of A and C. As U defines a representation

of G we have
U(z1)U(z2) = U(z122) (5.23)
The matrices I' also obey this multiplication law,
I'(z1)l(z2) = I'(z122) (5.24)
Factorising I" using equation (5.22) we have the condition
A%(z1)A%(z2) ® C(z1)C(z2) = A%(z129) @ C(7122) (5.25)
which implies that
A%(x1)A%(z2) = v(x1,22) A%(2122) (5.26)
Cxz1)C(22) = v~ (#1,22)C(m122) (5.27)

where (1, z2) is a phase factor. The equations (5.26) and (5.27) resemble the def-
initions of a representation of G, they are called projective representations. The
phase factor y(z1,z2) is the factor system of the projective representation. The
equations show that both A® and C are projective representations of G, where the
factor systems are the inverses of each other. We will see later that the appearance
of these projective representations is not significant. For the representations of 4 in
which we are interested the projective representations A and C will turn out to be

representations in the usual sense, y(z122) = 1.

The group G4, is an invariant subgroup of G' so we can form the quotient group
G /G, as in section 2.2.2. Elements of this quotient group are cosets gG,. We can

select a set of coset representatives
glGongGom s agmGa
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so that the coset g,G,, is labelled by a. Any g € G can be expressed uniquely as a
product of a coset representative g, and an element z in Gy, g = g,z. The product

of two coset representatives is

9a9b = GabTab
This is determined by the multiplication law of G/G,,. For cosets of a quotient group
90Ga 9pGa = 9agsGa = garGa (5.28)
Using the coset representatives we can define new basis vectors
lajp) = Uga)lip) (5.29)

We will show that the space spanned by the vectors |ajp) is invariant under U.

If we take a general element of the representation U(g,h) and act on a basis

vector we get

Ul(g, h)|bkv) = U(R)U(9)U (gv)|kv)
(@)U (gs)U (hgrr 1) |kv)

U
Dij(hg-14-1)U(gg0) 1) (5.30)

Using the coset representatives gg, = gqx for a unique z in G, consequently

Ul(g, h)|bkv) = Dij(hy-1,1)U(ga)U (z)|l)
= Dij(hy-1,-1) Aji(@) e (2)U (ga)l7p)

= Dij(hy-14-1) Aji(@)ep ()| djp) (5.31)

The vector U(g, h)|bkv) is a linear combination of the vectors |dju) so the space
spanned by these vectors is invariant under the action of the of U. As U is an
irreducible representation the representation C of G, must be irreducible. The irre-
ducible representations of G x H are labelled by an irreducible representation « of H

and a projective irreducible representation C of G, with a factor system conjugate

to A%,
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Equation (5.31) defines the representation U of G x H. To simplify the structure

of the equation we can write the basis vectors as tensor products
|bkv) = |b) ® |k) ® |v) (5.32)
Using matrix notation we obtain

Uh) 1) @ [k) ® [v) = [b) ® D(h__1)|k) ® |v) (5.33)

b

9
Ulg) o) @ [k) @ [v) = |d) © A%(x)[k) ® C(x)|v) (5.34)

where gg, = gqx. These equations also define the representation U.

5.3 The Weyl group

We will first define the Weyl group of the exchange permutations SU(n) and then
see how this group acts on the spin vectors |M) which are used to construct the

position-dependent spin basis.

5.3.1 Definition of the Weyl group

For a Lie group G the maximal torus T is the group generated by the Cartan sub-
algebra. The normaliser of G is defined to be

Normg(T) = {z € G:atz ' € T forallt € T} (5.35)
T is clearly an invariant subgroup of Normg (7). We define the Weyl group of G as
Wea = Normg(T)/T (5.36)

Elements of the quotient group are cosets 1 where z is an element Normg(7T').

There is a natural homomorphism ¢ from Wg to the automorphisms of T',
g(zT)t = xtz (5.37)

As z is an element of Normg(7') conjugating by z is an automorphism of 7. The

Weyl group acts on T' as automorphisms of 7.
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5.3.2 The Weyl group for SU(n)

For the exchange permutations SU(n) the maximal torus is the group of n x n

diagonal matrices

t= (5.38)

where e?2% = 1. This is the n — 1 dimensional torus 77!,

Applying the definition of the normaliser (5.35) to SU(n) produces conditions

on the elements x of Normgy(,) (T 1.
ot =tx (5.39)
Writing this in component form for the element z;; we get
ew’“xjk = ew;'acjk (5.40)

0k _ 10’

This implies that either xj, = 0 or et e’i. For a given j the second case can

only hold for one k the other entries in the row must all be zero. This implies that

x is a phased permutation matrix.

T = D(p) (5.41)

where D(p) is the n x n defining representation of S,,,

1 ifp(j) =k
Dyilp) = (5.42)
0 otherwise

For the defining representation of the symmetric group,
det D(p) = sgn(p) (5.43)

so D(p) is not an element of SU(n). In order for z to have determinant unity we

require ¢/ 2% = sgn(p).

138



5.3. The Weyl group

We can see that 77! is indeed a subgroup of these matrices (5.42) obtained by

taking p to be the identity. The inverse of x is

e—i01
z 1= DT (p) =gl

e—ian

so these phased permutations x are unitary. The phased permutation matrices (5.41)
form the group Normgy(,) (T™1). We will call this group of matrices 3, to indi-
cate the similarity with S,,. The Weyl group of the exchange angular momentum is

Wsum) = En/T™ 1, 80 Wsy(n) is isomorphic to S,.

5.3.3 The group ¥,

We will see later that >, plays an important role in defining A and in preparation
we will investigate the structure of this group more closely. We can parameterise
the elements x of ¥,, by the n angles 8 = (04,...,0,) and the element p of S,,. An
element x is then defined by (p, @). If we look at the multiplication of two elements

z and z' of ¥, using the factorisation (5.41) we find that
(0,0)(0,0") = (0,0 + p(8")) (5.44)
This is the multiplication law of semidirect product defined in (5.4)
Y, =8, x "t (5.45)

where S, acts on T"~! by permuting the angles, 8 — p~1(8).

5.3.4 Classes of ¥,

We can now identify the classes of 3. First we note that the inverse of an element

T 18

(p.0)"" = (o™, =p(0)) (5.46)
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Now if we take an element (p, @) and conjugate with any element (o, ¢) we obtain

the other elements in the class of (p, 8).
(0',0') = (0.9)(p,0)(0.¢)"
= (opo L, +071(0) 0o 'p T a(e)) (5.47)

The conjugate element p' of S, is in the same class of S,, as p. So one label for a

classes of ¥, is a class of S,,.

We must also see how the phases @ affect the class. If we look at the class of

(1,60) we see that
(', 8) = (I,671(6)) (5.48)

o can be any permutation so all other elements in the class of (I, ) can be obtained
from a permutation of the phases 8. These classes are labelled by unordered sets of

n phases {6}.

If we consider the general vector of phases 6’
0'=¢p+01(0) -0 tplo(g) (5.49)
¢ and o are arbitrary. Applying the permutation ¢ to both sides

0(0') =o(¢) + 60 —p~lo(e) (5.50)

As ¢ is arbitrary let us define a new arbitrary vector of phases, ¥ = o(¢).

o(8) = +0—p () (5.51)

In this general case it is clear that, unlike the classes of the identity element of S,

the phases @ are not constants of the conjugation. However for each cycle of p—*

1 contains the m

there is a constant formed from a sum of the phases. Assume p~
cycle (ij...k) then taking the sum of the the 7, j,..., k’th phases on the right hand

side of equation (5.51) we find

i +0; — i+ i+ 05—+ P + O —py = Z 0;
Lin (ij...k)

140



5.3. The Weyl group

We will define the sum of the phases in a cycle to be
Oj= >, b (5.52)
Lin (ij...k)
Applying any permutation 0! the vector of phases @' will still contain m phases
whose sum is 6;; . Setting the values of these constants determines the class of

(p, @) for a given p. A class of ¥,, is determined by r angles where r is the number

of cycles in p.

The classes of S,, are labelled by a partition A, where |A\| = n. In a partition
A = (A1, A2,..., A) the integers \; correspond to the lengths of the cycles of elements
of S, in the class A. We label the classes of ¥, with a partition A and the vector of
angles @) = (6y,,...,0,). The condition on the phases, 2% = sgn(p), transfers

to a condition on the parameters 0,

et 2im1 0 = sgn(p) (5.53)

sgn(p) is constant for any permutation p in the class A as the number and length of
the cycles is the same for all elements in A. Using the condition (5.53) the number
of parameters 0); can be reduced by one. A class of X, is therefore labelled by a

partition A of n into r integers and r — 1 angles 6, for each partition.

5.3.5 Representations of X,

¥, is the semidirect product S, x T"~! so, applying the results of section 5.2.2, the
irreducible representations of ¥,, are labelled by irreducible representations of 77!
and projective irreducible representations of the stabiliser of .S, with respect to the

representation of 77 1.

T" 1 is the group of diagonal matrices defined in (5.38). The group is Abelian so
the irreducible representations are one dimensional. The irreducible representations

Q of T' are labelled by an integer m, where

Q™ (6y) = "™ (5.54)
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An irreducible representation of 7! is formed from a product of these monomial

representations.
Q™(8) = &' =i (5.55)

The irreducible representation () is labelled by the vector of n integers, m =
(m1,...,my). As @ is a representation of 7" ! we expect one of these integers
to be redundant. For the group 7" we have the condition, e¢’2=% = 1. If we define

a vector of integers m’ from m so that

m' = (my — my,ma — My, ..., My _1 — My, 0) (5.56)

then we see that the representation Q™ is equivalent to Qm'. The vector m labels

irreducible representations of 77~

In the semidirect product the group S, of automorphisms of 7"~! defines a map

between irreducible representations of 7"~!. For p in S,
Q™(p 1(9)) = &' ="i%10) = Qrm)(g) (5.57)
The stabiliser of S,, with respect to the representation m is defined as the group

Spm = {p € Sp : Q™ = Q™) (5.58)

This is the subgroup of permutations between equal integers in m. If we divide the
integers m; into sets {4, j,...,k} where m; = m; = --- = my, then S, , is the direct
product of the symmetric groups on these sets of symbols. A representation of this
direct product is defined by choosing a representation for each of the subgroups of
permutations amongst the sets {7,7,...,k}. Representations of 3, defined using
projective representations of the stabiliser are not considered as they will not be

needed later.
To make this clear let us take the representation of 7"~! with n = 6 labelled by
the vector of integers
m = (3,3,3,1,4,4)
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Then the product of the symmetric groups S3 of permutations of {1,2,3} and Sy of
{5,6} form the group S, m. An irreducible representation is labelled by two parti-

tions, A of three and 7 of two.

A representation of 33,, is labelled by a representation m of 77! and r partitions
A; one for each set of equal integers. |A;| is the number of equal integers in one set.
Using the results in section 5.2.2 we can construct an irreducible representation for

any choice of m and Ay ... \,.

5.3.6 The action of the Weyl group on spin vectors |M)

We will now consider the properties that make the Weyl group significant in the
construction of the position dependent spin basis. A representation I'(SU(2n)) acts
on a complex vector space V. We have seen that spin vectors |M) used in the
construction must be in a subspace W of V. From 5.1.2 vectors in W have zero
weight with respect to the exchange angular momentum su(n). If we take x to be an
automorphism of the maximal torus T"~! of SU(n) the representation I'(SU(2n))

can be restricted to elements z of ¥,,. For |[M) in W

[(z)|M) = [(at)|M) (5.59)

where ¢ is any element of 77!, This comes from the relation for zero weight vectors,
I'(¢)|M) = [M). As a consequence the representation I'(zt) acting on the subspace
W is the same for any element of the coset 7" and the representation I'(¥,,) is also

a representation of the Weyl group %, /7T,_1 of SU(n).

We see that on the spin subspace W restricting the representation I' to the
automorphisms of SU(n) is equivalent to defining a representation of Wgy (). We
now want to investigate the properties of the Weyl group. An element of Wgy/(p)

is a coset z1™ . Using the decomposition (5.41) an element of the coset can be
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written

eHOnta,—10))

The only condition on the phases « is that 2% = 1 so the coset consists of all
elements z of X, which are constructed from the same element p of S,,. As 3, is the
semidirect product of S, and 7;,_; the multiplication law for the cosets is just that
of Sy,. It follows that the Weyl group, Wgy (), is isomorphic to the permutation

group Sy,.

This is just the structure that we require in order to construct the position de-
pendent basis. In the group SU(2n) we need a subgroup which permutes the n spins,
Y,. However if the spin states [M) are to transform according to an irreducible rep-
resentation of S, then a representation of ¥, should also provide a representation
of S, in the spin subspace W. As any representation of 3, on W descends to a

representation of Wgyy(p,) spin vectors transform according to a representation of Sy,.

5.4 The physical subgroup H

5.4.1 The n spin subgroup

The exchange permutations, which produce Wgys(,,), are not the only significant
subgroup used to define the subspace of spins W. From 5.1.1 and 5.1.2 spin vectors
M) in W have zero weight with respect to su(n) and identical spins s with respect

to the n spin subgroup [SU(2)]". Matrices U in [SU(2)]" are constructed from n
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2 X 2 matrices u; in SU(2),

U1
U= (5.60)

Un,

These matrices clearly form a subgroup of SU(2n). Irreducible representations of
[SU(2)]™ are constructed by taking the tensor product of n irreducible representa-

tions of SU(2)

R(U) = R (u1) ® R*(uz) ® --- ® R"(uy,) (5.61)

where R’(u) is an irreducible representation of SU(2). An irreducible representa-
tion R([SU(2)]") where the n spins are the same is a tensor product of n identical

representations of SU(2), RY(SU(2)) = --- = R*(SU(2)).

If we restrict a representation of SU(2n) to the [SU(2)]" subgroup we can de-
compose this reducible representation of [SU(2)]" into irreducible components and
find the number of these representations where the n spins are identical. The spin
vectors |M) used in the construction must be chosen from the subspaces spanned

by these representations.

5.4.2 Definition of H

We want to restrict a representation of SU(2n) to a subgroup generated by the
permutation operations ¥, and the spin subgroup [SU(2)]". We will call this the
subgroup of physical transformations of the spin vectors, 7. The vectors |M) used
in the construction of the transported spin basis will belong to particular irreducible

representations of this subgroup.

Given a vector |[M) in the subspace W applying one of these transformations

will produce another vector in W with the same spin s. To form elements in H we
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take the product of an element of [SU(2)]"™ with an element of %,,.

U] ety

(5.62)

ezﬁlul

eifn U,

The elements of 3, defined in equation (5.41) are made into a subgroup of SU(2n)
by taking the tensor product with the 2 x 2 identity matrix as with the generators
of the exchange angular momentum in section 3.6. Elements of H are parameterised
by u = (uq,...,uy), @ and p. As with 3, we can write down the multiplication law

for elements of H constructed using equation (5.62).
(p,0,u) (0, 0',u') = (pp, 0 + p~"(8'), u.p™" (u)) (5.63)
This is also the multiplication law of a semidirect product,
H=%,x[SU2)" (5.64)

where X, acts on [SU(2)]" by permuting the elements of SU(2), u — p~!(u) for
(p,0) € 2y,

5.4.3 Classes of H

The classes of I, are labelled by partitions A of n into r parts and a vector of an-
gles @, of length r for each partition A. In section 5.2.1 we noted that classes of a
semidirect product are labelled firstly by classes of the automorphism group. The
automorphisms of [SU(2)]" are provided by X, so A and @), will also distinguish

classes of H.

If we conjugate an element (p,0,u) of H with all elements (o, ¢, v) we obtain

146



5.4. The physical subgroup H

the class of (p, 0, u).

(0,0, u') = (0,0, V) (p,0, 1) (0,0,v) "

-1 -1 1,1 -1 ~1,-1 (5.65)
= (opo ¢ +071(8) — o~ p o(¢), v (w).o p ()

We are interested in the extent to which u’ is determined by u. To investigate this
we will follow the procedure used to determine the classes of ¥,. If we apply the

permutation o to u’ and define a new arbitrary element of [SU(2)]" from v
w = o(u) (5.66)
Then from (5.65) we find the relation
o) =wup H(w?!) (5.67)

If we consider the element u; of SU(2) it is clear that, provided 1 is not fixed by
p~ 1, we can obtain any element of SU(2) as the first term in o(u’). If the new first
element is to be w; then let the element Wp(1) be u;. The class of individual elements

uj in SU(2) is not in general maintained by conjugation.

Let 0! contain the m cycle (ijk...[) then the product of the elements of o(u’)

in this cycle is

Loy = (wiuiwj 1)(wju]-w,z1) . (wlulwgl)

= wi(uiug ... u)w; * (5.68)

The result is in the same class of SU(2) as the element w;u;...u;. To obtain u’
we apply the permutation o~ !. This changes the order of the elements of SU(2)
however there will still be m terms whose product is in the same class of SU(2) as
ujuj . .. ug. The class of SU(2) of the product of the elements of u in the same cycle

of 07! is a constant of conjugation.

The class of an element u of SU(2) is labelled by a complex number € of modulus
unity where the two eigenvalues of u are € and €, see section 2.7. To distinguish the

1

classes of H we require one eigenvalue € for each cycle in p~". If the class of p is

labelled by a partition A of n into r parts the classes of A for this choice of o~ ! are
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distinguished by a vector of eigenvalues of SU(2), €) = (e1,...,€).

As H is a semidirect product the classes of H are labelled by classes of ¥, and
the constants of conjugation €. A class of H is labelled by A a partition of n into
r parts and for each A a vector of angles, @), and a vector of eigenvalues of SU(2),

€, both of length r.

5.4.4 The volume element of H

The group H has an unusual structure, it consists of a finite number of continuous
parts one for each element of S,,. To sum a product of characters over the group H
involves a sum over the elements of S,, and an integral over the continuous param-
eters of the classes for each element of S;,,. For two elements p and o in the same
class of S, we have found that the continuous parameters labelling their classes are
the same. Therefore the sum over the elements of S;, can be reduced, as for a finite

group (5.1), to a sum over the classes of S;, where each class is weighted by its order.

For each class of S, there still remains an integral over the eigenvalues €) of
SU(2) and the angles 0. These integrals require a volume element for the region of
‘H that is to be integrated over. The angles label elements of the torus 7', each set
labels a single element which are all weighted equally. So to integrate with respect
to the angle 6, we use the infinitesimal angle dfly;. The condition on the angles
el = sgn(p) reduces the number of angles that we need to integrate over by

one. So if their are r cycles in the class of S;, there will be » — 1 integrals.

The parameters €y are eigenvalues of SU(2) and for each choice of €; there are
many matrices in SU(2) with the required eigenvalue. The eigenvalues have modulus
one so we can write €; = e'% where ¢j runs from zero to 2. The infinitesimal volume

element for SU(2) is A;A; d¢; where

Aj = (5.69)
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see section 2.7. Alternatively we can write

AjAj = (e =€) (€ — €)

We see the two eigenvalues of SU(2) appear symmetrically in the volume element.

We can now write the integral of a product of two characters over the group
H. To correspond to the character decompositions in (5.1) and (5.2) we will take
the character Xgi(2,) to be a reducible character of a representation of SU(2n)
restricted to elements of the subgroup H and x3 to be an irreducible character of

‘H, then

1
NY = o D s, Ax (5.70)
moA
where
1 2 2 o
Ay=—| [ ANy, ...dO5 _ dpy...dp,
E/\H 0 0
Xsun) (X, 05, €x)xn (X, 01, €x) (5.71)
and

AA = AJAL AN, ... AA,

This is the form of the character orthogonality relations we will use later to de-
compose the irreducible representations of SU(2n). The volume Q)3 is found by
integrating the infinitesimal volume elements as with the unitary group in theorem

2.7.1.
2w 2r
Qm:/ o [ ARdGy, .. .dO,_, dy . ..dd, (5.72)
0 0

Each of the r — 1 angle integrals with respect to 6 contribute a factor of 27. An
integral with respect to ¢ produces a factor of {1g;;(o) which when evaluated turns

out to be 2.
QXH = (27r)7‘—127‘ (573)

Using these results we will be able to determine the decomposition of a representa-

tion of SU(2n) given the characters of the representations of SU(2n) and #.

149



Chapter 5. Character decomposition of SU(2n)

5.4.5 Representations of H

As H is a semidirect product we can apply the general theory developed in section

5.2.2 to find the irreducible representations of H.
H=2%,x[SU2)" (5.74)

¥, is also a semidirect product, ¥, = S, x T""! and it is the group S, that
defines the automorphisms of both 7" 1 and [SU(2)]". From this we can refine the
definition of H

H=25,x (T x[SU2)") (5.75)
Irreducible representations of # are labelled by irreducible representations of 77! x
[SU(2)]"™ and projective representations of the stabiliser of the representation of
T x [SU(2)]" in S,
An irreducible representation R of [SU(2)]" was defined in (5.61)

R(u) = RYu1) @ R*(u2) ® - - - @ R™(uy,) (5.76)

R (u) is an irreducible representation of SU(2). The irreducible representations @

of T 1 are labelled by the vector of integers m. From 5.55
Q™(8) = ¢! =i (5.77)

Together Q™(0) and R(u) define an irreducible representation of [SU(2)]" x T L.
The group of automorphisms S,, defines maps between irreducible representations.

For an element p of S,
R,(u) = R(p™'(u)) (5.78)

Similarly
Q"™ (0) = Q™(p™'(9)) (5.79)

These two relations define maps between the irreducible representations of [SU(2)]" x

1
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The stabiliser under S,, of the representation of [SU(2)]" x T™ ! labelled by R

and m consists of the elements of S, which map the representation R, m into itself.
Sn,Rm ={p € Sn: Ry, = R and p(m) = m} (5.80)

If all the R? in R are different then clearly the stabiliser contains only the identity

element. This applies equally if all the m; in m are different.

We can divide the n symbols into sets {i,4,...,k} where R = R/ = ... = RF
and m; = m; = --- = my. Then if p is an element of S, which only permutes sym-
bols in the same set we know that R, = R and p(m) = m so p is in the stabiliser of
R,m. The permutation group on a set of symbols {i,7,...,k} is a subgroup of S,.
We define S, r m to be the direct product of the permutation groups on all such sets
of symbols {7,7,...,k}. Then S, rm is the stabiliser of the representation R, m of
[SU(2)]" x T" 1. As Sy rm is formed from subgroups of S, we can see that it is

also a subgroup of S,,.

To clarify this let us take an example for n = 6. If we choose a representation of

[SU(2)]" x T"~! where
RI—R2—R3 RY— RS — RS
my = my my = ms = Mg
Then the stabiliser is the product of the symmetric groups on the symbols {1, 2}

and {4,5,6}. Any p in this subgroup will map the representation R, m back into
itself.

If there are ¢ sets of symbols {i,7,...,k} then an irreducible representation of
Sn,r,m is labelled by ¢ partitions Al... A7 where each defines an irreducible repre-
sentation of the permutation group on one set {4, 7,...,k}. We can use this to define
an irreducible representation of 7. The representation is labelled by a representa-
tion R of [SU(2)]", a representation m of 7" ! and a representation A!,... A\ of
Sn,k,m- These representations will be sufficient for our problem without considering

projective representations of the stabiliser.
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We can use the general results for the semidirect product in section 5.2.2 to
define how such a representation of H acts on basis vectors of the carrier space of
the representation. Let S, r.m be the stabiliser of R(u) ® Q™(8). F’\l"')‘T(Sn,Rym)
is an irreducible representation of the stabiliser. A vector in the representation of

H can be written
|h) =1b) ®c® |v) ® |v) (5.81)

where ¢ is a complex number of modulus one, the space acted on by the one dimen-
sional representation Q™. |v) is a basis vector of the carrier space of R so it can be

written as a tensor product of n basis vectors of the representations R;,
V) =v1) @ Jv2) @ -+~ @ |vp)
The basis vector |v) is in the carrier space of the representation I -+’ (Sn,rR,m) and

|b) is defined by the coset representatives o of S, /Sy r.m-

From equations (5.33) and (5.34) an irreducible representation of H is defined
by

(Is,, 0, Iisupn) |h) = [B) @ e Z="%0) c® |v) ® |v) (5.82)
(Is,, Ipn-1,u) |h) = |b) ® c® R(op(w))|v) ® |v) (5.83)
(0 Ipn—1, Iisugage) 1) = |d) @ c® [~ (v)) @ TV =Y () |v) (5.84)

where poy, = oqa with @ € S, p.m.

5.4.6 Physical representations of H

Using the semidirect product we have classified the irreducible representations of
H. The vectors of SU(2n) eligible for use in the construction can belong only to
particular representations of the subgroup H. These are the representations that we

will now determine.

From 5.1.1 vectors used in the construction must have equal spins s with respect

to the n spin subgroup. Restricting an irreducible representation of H, labelled by R,
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m and A!... A to the [SU(2)]" subgroup produces the representation R([SU(2)]"),
see equation (5.83). The n spins are identical if the representations R/ (SU(2)) used

to construct R are the same.
R'=R’=...=R" (5.85)

This is the first condition on the physical irreducible representations of H which can

be used to generate a position dependent spin basis.

Spin vectors used in the construction are also zero weight vectors of the exchange
angular momentum, condition 5.1.2. This ensures that the Weyl group acts as the
permutation group on the n spins and that a representation of ¥,, descends to the
Weyl group. For this to be the case we saw that a representation I'(X,,) of the group
of automorphisms of the exchange angular momentum can not depend on the phases

0. From equation (5.59)

I'((p,0)) M) = T'((p,0)) T((1, %)) [M) (5.86)

If we restrict a physical representation of H to the subgroup i, then the represen-
tation of 3, we obtain should obey the condition (5.86). From (5.82) we see that
for this to be the case the representation of H must be constructed from the trivial

representation of 771,
mi=mg=---=m, =0 (5.87)

From the two conditions (5.85) and (5.87) on the representations R and m we

can determine the stabiliser, S, g m, for these physical representations of H.
Sn,rm ={p €Sy : Ry =R and p(m) =m} =S5, (5.88)

All elements of S,, map a representation R with n identical spins back into itself and
map the trivial representation of 777! to the trivial representation. As irreducible
representations of H are labelled by representations of S, grm the physical repre-
sentations are labelled by an irreducible representation of S,. A representation of
Sy, is labelled by a single partition A. Selecting the representation A of S,, can be

seen as a choice of representation of the Weyl group which permutes the spins in
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the construction. The physical representations of H are labelled by a choice of spin

s, which defines the R;(SU(2)) in R([SU(2)]") and a representation A of S,.

Rewriting equations (5.82) to (5.84) for physical representations of H we obtain

(Ls,,0, Iisy() V) ® [v) = |[v) ®@ [v) (5.89)
(Is,, Ipn-1,u) [v) ® [v) = R(u)|v) ® |v) (5.90)
(0, Ipn=1, Iisu ) [V) @ [v) = [p7 ' (v)) @ T (p) |v) (5.91)

In defining the vectors in the carrier space of the representation the constant c
has been removed. As we are considering only the trivial representation of 777! its
inclusion would serve no purpose. For the physical representations of  the quotient
group Sy, /Sn. r.m is Sp/Sp. This is a group of one element and so there is only a
single vector |b) which is also omitted. As the stabiliser S, g.m is now the whole of
Sy, we do not need to define a separate element « of S, g m. Equation (5.91) defines

a representation P of the symmetric group where,
P(p)|v1) @ [v2) @ -+ @ |vp) = [vp-1(1)) @ [V,-1(2)) @ -+~ ® [vp-1()) (5.92)

P is a representation which permutes the tensor product.

Equations (5.89), (5.90) and (5.91) define the physical irreducible representations
of H. In order to investigate further the properties of these representations it will

be useful to construct them explicitly. A physical representation B**(H) is
B™(p,0,u) = [(R*(u1) ® --- ® R*(uy)) P(p)] ® *(p) (5.93)

It is the number and type of these representations B** in a representation of SU(2n)
restricted to H that we want to determine. A spin-statistics connection is a rela-
tionship between the spin and the representation A of S,, for particular choices of
representations of SU(2n). The representation A of S, determines how spin vectors
transform under permutations of the spins. If X is the trivial representation spin
vectors are symmetric when permuted, a property which then transfers to the po-
sition dependent spin basis. The alternating representation of the symmetric group

provides antisymmetric spin vectors and other representations of S, correspond to
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spin vectors which produce parastatistics in the position-dependent basis.

5.4.7 Characters of B*}(H)

We intend to use the character orthogonality relations to decompose a representa-
tion I'(SU(2n)) restricted to H. To apply the character orthogonality relations we
must know the characters of the irreducible representations of 4 whose presence

we want to determine in I', these are the characters of the physical representations

B (H).

The representation B**(#) defined in (5.93) is the tensor product of a represen-
tation T'*(S,,) and the representation [(R*(u1) ®---® R*(uy)) P(p)] of H. The char-
acter of a representation is the trace of the representation and the trace of a tensor
product of two matrices is the product of the traces of the two matrices. Therefore
to find the character of B**(H) it is sufficient to know the characters of the repre-
sentations T'*(S,,) and [(R*(u1) ® - -+ ® R*(uy)) P(p)] and take their product. T is
an irreducible representation of S, for which the characters are well known, see sec-

tion 2.8. It remains to determine the trace of matrices [(R*(u1)®---® R*(u,)) P(p)]-

As a preliminary we will state a lemma for the trace of a tensor product multiplied

by P(p).

Lemma 5.4.1. For any n m x m matrices U',... U™
Tr(U'®...@U"Pp)= [ Tr@wvs...U"
cycles of p

where P(o) permutes the tensor product of n vectors and (ijk ...l) is a cycle in p.

Proof: Let U’ be a matrix with elements Ugjqj. P(p) acting to the left permutes

columns in U' ® ... ® U™ so

(U ©...@U") POprepnaras = Upgyorpy - Upng oy, (5:99)

Setting p; = ¢; and summing

1 1
Tr(U'®...@U") P(p)) = Y Ugig, 111y Uty 100, (5.95)
q1---4n
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Now let (ijk...I) be a cycle in p so we know that p~!(i) = j. Taking the terms in
(5.95) with these labels

o l o
> UigiUig U =Tr (UT7...UY) O
qiqj---q1

Using lemma 5.4.1 the characters of [(R*(u1)®- - -®R*(uy,)) P(p)] are the product

on the cycles of p of the characters of R*(u;jx..1), where
Uijk.. = UiUjUL . . . U] (5.96)

The representation R*(SU(2)) can also be labelled by the integer 2s, this is the
number of boxes in the Young tableau of one row which distinguish irreducible
representations of SU(2). The character of such a representation of SU(2) is given

by the Weyl character formula, section 2.7.

€2 1
EZS 1 625 - E2s
x(Rs(u)) = = = (5.97)
€E—F€
e 1
€ 1

e and € are the eigenvalues of u. They label the classes of SU(2).

If we combine these results we can write the character x3, of the representations

[(R*(u1) ® --- ® R¥(un)) P(p)] of H,

e 1
e 1
Xulp,0w)= [ —— (5.98)
cyclesof p | € 1
e 1

where € and € are the eigenvalues of u;; ;. It follows that there is one eigenvalue € for
each cycle in p. (As the character is a class function this agrees with the definition
of the classes of H. A class of H is labelled by a class of S,, with one angle 6 and
one eigenvalue € for each cycle in the class of S,.) The characters of the physical

representations B**(#) are then given by the product of characters

X5 (0,0,0) = x3(p,0,u) X3, (p) (5.99)
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The physical representations are independent of the angles @ so the angles do not
appear in the characters of B**(#). The characters are still functions of the eigen-

values €, and the class s of p in S,,.

5.5 Representations of SU(2n)

The irreducible representations of SU(2n) are labelled by a vector of 2n — 1 integers
f = (f1,..., fon—1)- The integers are the lengths of the rows of the Young tableau
associated with the representation. Classes of SU(2n) are labelled by 2n complex
numbers of modulus one, € = (€1,...,€2,) with the condition that their product is

unity. We will often think of this condition as a definition of ey,

€2 = €1.€2...€91 (5.100)

The complex numbers € are the eigenvalues of the elements of SU(2n) and the classes

of an element v of SU(2n) is determined by its diagonal matrix of eigenvalues

= {e1,€2,..., €} (5.101)

The order of the terms ¢; in € is therefore arbitrary.
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Chapter 5. Character decomposition of SU(2n)

5.5.1 Characters of SU(2n)

The characters of SU(2n) are a function of the class €. Using the Weyl formula we

can write the irreducible characters as a ratio of determinants

fi+(2n-1) fi+(2n-1) fi+(2n-1)
€1 €2 T Eop
6{2+(2n72) €£2+(2n72) o 6524»(27172)
6{2n71 6527171 o 65721”71
. 1 1 e 1
X = .102
SU(2n) (¢) (2n—1)  (2n-1) (2n—1) (5.102)
61 62 - €n
61 62 ... en

As these ratios are awkward to write we will abbreviate the Vandemonde determi-

nants by writing only the first row of the matrix. So for example

fi+(2n—1) fi+(2n—1)
61 .. €n
€f2+(2n72) €f2+(2n72)
- P n
6{1+(2n no eht@n-1)) = 1 ‘ . (5.103)
e{" . 6,]2"

Using this notation the character of an irreducible representation of SU(2n) is

£ _14a <o Cop
XSU(%)(G) - |6(2n—1) 6(2n—1) | (5.104)
i =N

5.5.2 Restricting a representation of SU(2n) to H

To write down the character of SU(2n) for an element h € H we must find the

eigenvalues of h. From equation (5.62) an element in A can be factorised

ey,
h= (D(p) ® I) (5.105)

ezﬁn Up,

When p is the identity the eigenvalues are e¥1eq, 1€y, ... e, e'"€,, where €

is an eigenvalue of u;.
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5.5. Representations of SU (2n)

We take a vector v to be an eigenvector of h with eigenvalue 7.

e,
(D(p) @ I)v=r1v (5.106)

ezﬁn U,

We will treat v as the direct sum of n two-dimensional vectors
V=vi OV D - DV, (5.107)

If p is not the identity let (jk...l) be an m cycle in p. For this cycle we obtain,

from the eigenvector equation (5.106), m equations

ewfuj- Vi = TVg
(5.108)
el v, = TV
These can be combined in order to find an eigenvector equation for vy,
ei(‘97+0’°+"'+01)uj-ul v vE = A" v (5.109)

Similar equations are obtained for the other v; in the cycle. In each case the elements
u in the product have undergone a cyclic permutation. If vy is an eigenvector of
ujuy - . . g, which we will call uj;__x, with eigenvalue e then v, will also satisfy (5.109)

with

i 62m’p/m ei(0j+"'+0l)/m 6% (5.110)

where p is an integer. 7 is an m’th root of unity multiplied by a phase determined
by the sum of the phases in the cycle and an m’th root of the eigenvalue € of ujy. ;.
A cyclic permutation of the u’s will have the same eigenvalue € so each version of
equation (5.109) will yield the same values of 7 which is as we require. By setting
vectors v; not in the cycle equal to the zero vector we find eigenvectors v whose
eigenvalues are given by the relation (5.110) for each of the cycles in p. As € is also
an eigenvalue of uj ; and there are m roots of unity, each m cycle contributes 2m
eigenvalues. Summing over the cycles in p we obtain the 2n eigenvalues of h. The

characters of SU(2n) restricted to the subgroup H are then found by plugging the
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Chapter 5. Character decomposition of SU(2n)

eigenvalues (5.110) of h into the Weyl character formula (5.102). The eigenvalues €
and the sum of the phases in a cycle, 0. ; = 0; + 0 + - - - + 6; were the parameters

used in section 5.4.3 to distinguish classes of H.

5.6 The decomposition of SU(4)

The two spin example is the simplest character decomposition and the calculations
in this case can be done most explicitly. The results can also be compared to those

obtained using Young tableau.

In this section we will only be considering the case where n = 2. The per-
mutation group Sy contains two elements, I and (12). # contains two disjoint
components depending on the element of Se used to construct h in H and the
classes of H are labelled by different parameters in these regions. For the class 1
of Sy two parameters are eigenvalues of SU(2), €; and €9, there is also an angle 6.
The second angle 05 used to construct elements of H is determined by the condition,
e01+02) — son(I) = 1. When p is (12) there is only one parameter, the eigenvalue €,
of ujue. The angle 015 = 61 + 0> is determined by the condition el = sgn(p) = —1.
To sum the product of characters of SU(4) and H over the classes of H we must

integrate over the two continuous regions and sum the results.

An irreducible representation of SU(4) is labelled by f = (f1, fo, f3) and the cor-
responding character is XEU(4)' From equations (5.70) and (5.71) for the character
decomposition of a reducible representation of H the number of physical represen-

tations By () in a representation f of SU(4) is given by

SA T o 9

A 111
2 2 12 (5.111)

1 27 2w 2r
A = — / AR dpdpadb,
QI 0 0 0

ng) (I, €r,01)x3 (1, €r) (5.112)
1 27T_ o
A = 0, XEU(4)((12)a612a912)X§H((12)a€12) AA derz (5.113)
0
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5.6. The decomposition of SU(4)

The factors of 1/2 are from the order of Ss. X§2 ((12)) is =1 depending on the whether
the representation Bjy(#) is constructed from the trivial or alternating representa-
tion of Sy. For example to find the number of representations where the vectors are
antisymmetric under the permutation of the two spins A5 is subtracted from A; and
the result is divided by two. In equations (5.112) and (5.113) XgU(4)(Ii, €x,0)) is the

character of the representation f of SU(4) restricted to the classes of # labelled by x.

5.6.1 The character of SU(4) for elements of H

The eigenvalues of an element of H are given by equation (5.110). The two classes

of Sy are one two-cycle, (12), or two one-cycles, I. For I the four eigenvalues are

e—wl—

6“9161 6“91%1 6_“9162 €2

€1 and ey are eigenvalues of u; and wy respectively. These eigenvalues can be sub-
stituted into the Weyl formula (5.102) for the character of the representation f of
SU(4)

(eialel)f1+3 (eielgl)fl+3 (67i9162)f1+3 (efi91E2)f1+3
(ei0161)f2+2 (6i01g1)f2+2 (e—i0162)f2+2 (e—i0152)f2+2

(eiélel)fg,-l—l (ewlgl)faﬂ (e—i0162)f3+1 (e—i01€2)f3+1

1 1 1 1

XEU(4)(I’ 01,€r) = . . . .
(610161)3 (610161)3 (6—10162)3 (6—z01E2)3

(ei9161)2 (ei91E1)2 (efwleg)Q (67i01E2)2
(ei9161)1 (ei"lEl)l (efzﬂl@)l (efiﬁlé)l

1 1 1 1

(5.114)

If we solve equation (5.110) for the eigenvalues of H using the two cycle (12)

we obtain four different eigenvalues. Using the condition on the sum of the angles

¢%12 = sgn((12)) = —1 to eliminate the angle ;5 the eigenvalues depend only on
€12,
iel,  —ie) dEh  —ig)
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Chapter 5. Character decomposition of SU(2n)

Substituting these terms into the Weyl character formulae we obtain the character

of SU(4) for elements of # generated using (12).

. 1/2 _1/2
(Zflé )/1+3 (“14 )f1+3

. 1/2 _1/2
("flé )f2+2 (2514 )f2+2

. 1/2 _1/2
(—iel)?) 3 (—igf?)h+s

. 1/2 _1/2
(miel)?) P2 (—ig)?)fa+2

N S e O N T L
X&(1)((12), 019, €19) = : : : :
(i) (&) (—iery))? (—ie)?
(ie))? (iE))? (—iery))? (—ie)?
(i)’ (En))  (—ierd’)  (—iery)

1

5.6.2 Evaluation of A;

The character x3, was defined in (5.98).
the definition of A; (5.112) we obtain the

1 1

1
(5.115)

Substituting the character formulae into

following integral

G?S-H E?S-H 6%3—1—1 E%s—i—l
1 2 2w p2m 1 1 1 1
Ar = Q / AA  dbBidpidps
rJo Jo Jo €1 € €2 €
1 1 1 1
(e_ialsl)f1+3 (e—iﬂlgl)f1+3 (ei0162)f1+3 (6i01g2)f1+3
(e—i0161)f2+2 (efit9lgl)f2+2 (ei9162)f2+2 (ei9152)f2+2
(e_ialel)f3+1 (e—i01g1)f3+1 (ei0162)f3+1 (6i01g2)f3+1
1 1 1 1
: - : : (5.116)
(6—z0161)3 (6—10161)3 (ez0162)3 (6“91?2)3
(6—i01 61)2 (e—i01€1)2 (eial 62)2 (eleZ)Z
(efiﬂl 61)1 (e*lel)l (ei01 62)1 (ei01E2)1
1 1 1 1

where taking the complex conjugate of the character of SU(4) in (5.114) changes

the sign of 0, the effect on the eigenvalues € is removed by permuting columns in

the determinants. A change in the sign of the determinant in the numerator will be
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5.6. The decomposition of SU(4)

cancelled by the same sign change in the denominator.

To evaluate this integral we will employ the Littlewood-Richardson rule to ex-
press the SU(4) character as a sum of SU(2) characters. The same technique will be
repeated in the general case. The coefficients found from the Littlewood-Richardson
theorem give the multiplicity of irreducible of representations of U(m) x U(n) in the
decomposition of an irreducible representation U(m + n) this is discussed in section
2.9.3. As these coefficients are the multiplicities of representations they can also be

applied to the decomposition of characters

U(m+n) Z ,BXU ( ) (5.117)

f is a vector of m + n integers labelling the irreducible representation of U(m + n)
and similarly a is a vector of m integers and 3 a vector of n integers labelling the
respective irreducible representations of U(m) and U(n). The coefficients Yfﬁ can

be evaluated using the rules for multiplying tableau.

The character of U(m 4+ n) is a function of the m + n eigenvalues €1 to €,,4,. We
can take the first m eigenvalues, €; to €, to be the eigenvalues of the U(m) subgroup
and assign the remaining n eigenvalues to the U(n) subgroup. By substituting the
Weyl character formulae for the characters of the unitary group into equation (5.117)
we can rewrite the Littlewood-Richardson decomposition,

rHmin=)  Anine)

1 ot mtn _
(m+n—1) (m+n—1) -
|61 - Cmin |

a1+(m-1) 60¢1+(m*1)| |6ﬁ1+(”*1) 6/31+(”*1)|

f € e tm m+1 Tt tmA4n
Z Yaﬁ (m—1) (m—1) n—1) (n—1) (5118)
e € | |e € |
aﬁ 1 .. Em m+1 o Cmtn

The determinants in the characters have been abbreviated as defined in (5.103). We
notice that as we have dealt with the decomposition of the unitary group we have
not needed to assume any relations between the eigenvalues. We can regard equation
(5.118) as a factorisation of a the m + n determinants into a sum of terms involving
smaller determinants and we will refer to this as the Littlewood-Richardson factori-

sation. We should note that while using this formulae seems to imply a significant
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Chapter 5. Character decomposition of SU(2n)

simplification in the evaluation of a large determinant, the rules for evaluating the
coefficients Yéﬁ are complex. Effectively we are transferring some of the difficulty

in evaluating the character into the evaluation of the coefficients.

We will now apply the Littlewood-Richardson factorisation (5.118) to the equa-
tion for A; (5.116). We factorise the ratio of the determinants of 4 x 4 matrices into

a sum of products of ratios of the determinants of 2 x 2 matrices.

1 2T 2 2 .
4 = o / / S vEs AR drdidgs
I1Jo 0 0 af

|(6—i01 61)a1+1 (e—wlgl)a1+1| |(6i01€2)ﬂ1+1 (ei01g2)[31+1|

[(e7rer)  (e7&)| (e1€2)  (e1%y)]
s+1=2s+1 2s+1 =2s+1
e | e e

€1

ler & le2 €|

1 21 2 21 . .
= YE. AAdO,d¢d ~i(|ex|01-|B]01)
Qr 0 /0 /0 azﬂ af 1 d)l ¢2 €

ar+1—ar+1) | Bi1+1_B1+1 2s5+1 —2s+1| | 2s+1 —25+1|
2 © € €2 €

|€1 € | e | |€2
ler &l le2 & le2 & le2 &

(5.119)

|| is the sum of the integers in a. The three integrals now separate and can be

solved in turn.

The integral with respect to 6; is zero unless

o = 18]

If A is not zero then the phase integral gives 27 which cancels with a factor of 27
in Q7. The integrals with respect to ¢; and ¢9 are both integrals of the product of
two irreducible characters of SU(2) over the group SU(2). Using the orthogonality
of irreducible characters we know that these integrals will be zero unless the repre-
sentations o and B are both the spin s representation of SU(2). A representation
(a1, a) of SU(2) is equivalent to the representation («; — ag, 0), this can be verified

by looking at the Weyl character formula, therefore A is zero unless
011—052:28 ,61—,62:28
If we define a vector of integers s = (s1, $2) where s; — s = 2s then combining the
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5.6. The decomposition of SU(4)

conditions from the three integrals Aj is zero unless
a=08=s (5.120)

If Ar is not zero the integrals with respect to ¢; and ¢9 both produce factors of
Qs1(2) which cancel the remaining terms in ;. Only one term in the sum can have

a and B which obey condition (5.120) and we have the result
A =YL (5.121)

YL is found by multiplying two identical tableau s and finding the number of tableau
f in the result. This is equivalent to the result determined directly from the Young
tableau in chapter 3 for the number of spin s subspaces with zero weight with respect

to F,.

5.6.3 Evaluation of A4,

We will apply a similar procedure to evaluate Aps.

. 1/2 —1/2 . 1/2 —1/2
I / (egy") 153 (igy) 13 (i) 43 (i) N
. 1/2 —1/2 . 1/2 —1/2
Q2o Jie))? (i@ (—ien)? (—iel’)?
62.s-l—1 EQS+1 .
212 AR déis (5.122)
let2 €12

Taking the complex conjugate of the SU(4) character permutes columns in the
matrices but any change of sign in the numerator is cancelled by a similar factor
from the denominator. We will rearrange this equation into a form where we can

use character orthogonality to evaluate the integrals. Let

; 1/2
eV =n= €12

Changing variables in the integral
2 [T @) (i) 1S ()
Dz Jo  [Gm)?® @)* (—in)?® (=)’

| 2(25+1) 72(2541)) o
(AA)Y  dyp (5.123)

A =

n
7|

n?

The integral (5.122) with respect to ¢ is periodic with period 27 so the integral with
respect to 1 is periodic with period . Using this the integral (5.123) can be returned
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Chapter 5. Character decomposition of SU(2n)

to an integral over SU(2). Applying the Littlewood-Richardson factorisation (5.118)
and some algebra we obtain

M g I () (Y

i)
12 — — —
iz Jo 4570 I i | =n =T

( |,’72(25+1)+1 ﬁ2(25+1)+1| s+l s+l

In 7l In 7l

) AA dyp (5.124)

This is a sum of integrals over SU(2) of the product of three characters of SU(2).
Solving such an integral is equivalent to decomposing the tensor product of two
irreducible representations of SU(2), the solutions of which are the Clebsch-Gordan

coeflicients.

1 271'_ _ o
Copr = & /0 Tt (X0 (DX () ABd (5.125)

The Clebsch-Gordan coefficients for SU(2) are given by

1 if |l — <~v<a+
Cogy = o =A< B (5.126)
0 otherwise

To apply this to the integral for A;5 we recall that the representation a of SU(2) is
equivalent to the representation (a; — a2, 0) and define the integer « to be a3 — as.
We also know from the Weyl character formula that the characters of SU(2) are

real. Solving for A
Ary =i YES (=1)IPI[C, 5 (4542) + Capas] (5.127)
af

We have now evaluated the second integral in the formula (5.111) using the Littlewood-

Richardson and Clebsch-Gordan coefficients.

Before combining the results for A1 and Ay we can state another property of
Ao, An irreducible representation B**(H) restricted to the subgroup of H con-
nected to the identity is a tensor product of the representations R® of SU(2). This
is an irreducible representation of SU(2) x SU(2). If a representation of SU(4)
contains no representation of this subgroup, ie Ay = 0, then we also know it can

not contain the corresponding representation of 7. Therefore Ay, is zero if Ay is zero.
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5.6. The decomposition of SU(4)

The rules for multiplying Young tableau determine the coefficient Y. The num-
ber of boxes in a tableau f which is the product of two tableau s is twice the number

of boxes in s. So if A is nonzero

If] = 2(s1 + s2) = 2(2s + 2s2) (5.128)
where s9 is an integer but s can be half integer. Using this we can replace the phase
ilfl in (5.127) with (—1)2*
5.6.4 The number of physical representations of H in SU(4)

Substituting the expressions for A; and A, into equation (5.111) for the number of
physical representations in the decomposition of the representation f of SU(4) we

find that

1
Noy = 5 + x5, (( 1) [Co g 4ssa) + Capas]  (5.129)

This gives the number of physical irreducible representations B;y () when the rep-

resentation of SU(4) is restricted to H.

A is a partition of two and if we add the results for the two possible values of

X§2((12)), which are £1, we find that
Nig + Niy) = Y (5.130)

The number of representations of H with spin s from which we can select spin vec-
tors |M) to use in the construction is given by the number of copies of the tableau
f found when two identical tableau labelling a representation of SU(2) with spin s
are multiplied. This agrees with the result for the number of multiplets with spin s

and zero weight with respect to E, which we obtained directly in chapter 4.

From the results in chapter 4 we also expect that approximately half the mul-
tiplets available to the construction will transform according to each irreducible
representation of S. For this to agree with equation (5.129) A;2 should be zero
when A; is even and +1 for A; odd. While we have not been able to establish

this from these results we show that this is plausible. If we consider a choice of
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Chapter 5. Character decomposition of SU(2n)

a = (aq,a9) and B = (B1, ) for which Yéﬁ is not zero then changing a and 3
slightly doesn’t change Y;ﬁ. For example

f f
Yiara)(81,8:) = Y(an—Lan)(B1+1,6) (5.131)

The sign (—1)8 multiplying these two terms in the sum is different. Consequently
the terms cancel. Unfortunately this argument can not be applied to all shapes of
tableau. Using this procedure we see that we expect most terms in A;9 to cancel
and we will be left with a small integer although restricting this to 0 or £1 has not

been achieved.

In section 4.6 we evaluated the exchange signs of spin multiplets in the low
dimensional irreducible representations of SU(4) numerically. For these representa-
tions labelled by tableau with up to six boxes we can also determine the number
of multiplets with each exchange sign using (5.129). The analytic results from the

character decomposition agree with those computed directly.

5.7 The decomposition of SU(6)

Before tackling the general case it will be useful to see how the techniques introduced
to solve the integrals in the decomposition of SU (4) are modified when the symmetric
group is less trivial. If we take n to be three we are dealing with representations of
the classical groups SU(6) and S3. S3 is a group of six elements in three classes,
the identity, three two cycles, and two three cycles. The formula for the character
decomposition will now involve a sum over these three classes. Rewriting equations

(5.70) and (5.71) for the integral of the characters over H when n =3

1 3 2
Ni = EAI + X§3((12))6A12 + X§3((123))§A123 (5.132)
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5.7. The decomposition of SU (6)

1 2 2w .
AI = 5 AAd¢1d¢2d¢3d01d92
Q1 Jo 0
Xsue)(L,€1,0r) x3(1, €r) (5.133)
1 2w 2w .
Ay = 0. AA dpradpsdbs
12 Jo 0
YEU(G)((lz)aﬁuaom)Xg{((12)7612) (5.134)
1 [ _
A = G X50(6)(123), €123) x3,((123), €123) AR dbrzs  (5.135)
0

We will solve the integrals for the A’s in turn, factorising the determinants until we

reach products of SU(2) characters.

5.7.1 Evaluation of A;
For elements of H connected to the identity the character of the representation of
SU(6) is

|(ei‘91 61)f1+5 (eielgl)fl+5 (eiﬂg 62)f1+5 (ei92g2)f1+5 (ei0363)f1+5 (ez’9353)f1+5|

|(ei01 61)5 (ei01g1)5 (6i9262)5 (€i92€2)5 (ei03€3)5 (€i03E3)5 |

This is found by substituting the eigenvalues from (5.110) into the Weyl character
formula for SU(6). We will apply the Littlewood-Richardson factorisation (5.118)
twice to the character of SU(6). Splitting the character first into the sum of the
products of characters of SU(4) and SU(2). Then factorising the character of SU (4)
in the product of two characters of SU(2). Substituting the characters into equation

(5.133) for A;

1 271' 27T JE—
a= o /0 S Y g, AR diydodesdty dbs

afy
+1zai+l +1 _f2+1 +1 vy 41
ei(|°‘|01“‘|ﬂ|92‘i‘|’7|93)|€(ll1 et ||€/[231 f:zﬂ2 |le3* " €|
e @l Je @l e e

|€%s+1 E%s+1| |€%s+1 E%s+1| |€§s+1 E§s+1|

5.136
ler &l le2 & e &| ( )

The Littlewood-Richardson coefficients, Yafﬁw which appear when the factorisation

is applied twice are the number of tableau f in the product of the three tableau «,

B and ~.
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Chapter 5. Character decomposition of SU(2n)

To solve the phase integrals we use the condition, et20% =1, to eliminate 65.

Then for A; to be nonzero
la| = (B8] = |7 (5.137)

The three ¢-integrals are each products of two irreducible characters of SU(2)
integrated over SU(2). From character orthogonality either both characters corre-
spond to the same irreducible representation of SU(2) or the integral is zero. We

have the second condition
a=F=v=2s (5.138)

where « is defined as (a; — ag). The volume €Q; is cancelled when the integral is

nonzero. Combining the two conditions we find that

Ar=Y! (5.139)

SSS

s is defined as previously to be a vector (s1,ss) where s; — so = 2s. It is clear that
this result for Ay will generalise to any value of n. Ay is the number of tableau f in

the product of n identical tableau with spin s.

5.7.2 Evaluation of A,

The character of SU(6) in this case will be similar to that used in the integral for A;

however the eigenvalues will be replaced by powers of (ieiel?/Ze}f), (—iewl?ﬂe}f),

(e~%12¢3) and the equivalent terms with €. These eigenvalues are the solutions of
(5.110) for a single two cycle. We first apply the Littlewood-Richardson factorisation

once to separate the terms involving e3. We rewrite (5.134) as

27 27
A = 912 / Z ap AA drodpsd

—1/2 . 1/2 ._1 2
illoloes/2- 1810 |(zelé )8 (i)’ ) P (i) B (i)
. 1/2 _1 2 . 1/2 ._1/2
(ies?)? (i) (—ie)))?  (—ie 1é> |
B1+1 —ﬂ2+1 2541 25+1 2541 —2s+1
| | €% | |2 |

- (5.140)
= €3| |612 612| = €3|
We can now evaluate the phase integral. A2 is nonzero only if
|| = 2|8 (5.141)
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The integral with respect to ¢3 is the integral of two irreducible characters of SU(2)

from which we find the condition
p=2s (5.142)

for Aj2 nonzero. The integral for ¢, is the same as the integral for Ao in SU(4)
where the representation f is replace by a. Combining these results we have deter-

mined A12
Ay = (—-1)* Z Z Y% ( Cysas+2) + Cyoas) (5.143)

We see that the solution still involves two sums over the coefficients Ygﬁ. Effectively
the solution of A1s when n = 3 requires knowledge of all the solutions of Ajo from

n = 2.

5.7.3 Evaluation of A3

Ajos is defined in equation (5.135) into which we substitute the Weyl characters of

SU(6) and H. The eigenvalues of the elements of H connected to a three cycle in

S3 are e}ég and E}ég multiplied by each of the cube roots of unity. We simplify the

formulae for A;23 by changing the variable so that
erths =n=e" (5.144)

By applying the the Littlewood-Richardson factorisation twice we reduce the char-

acter of SU(6) into a product

a1+1 ﬁa1+1|

Ay = Q Z £, (OB dip 75 =D [
123 By

|7751+1 ﬁ/31+1| |77’Y1+1 ﬁ’71+1| |n3(28+1) ﬁ3(28+1)|
Il I 7l n* 7

The expresion can now be written as a product of SU(2) characters

In 7l

(5.145)

A AAdp 5 (lal=1)
123 9123 Z By Y

n n
In 7| m 7 In 7l
ar+1 ﬁa1+1| |7751+1 ﬁﬂ1+1| |7771+1 ﬁ71+1|

In 7 In 7l In 7l

<|77(65+4)+ ﬁ(6s+4 +1) |n(65+2)+1—(6s+2)+1| |77(65)+1—(6s)+1|>

In

(5.146)
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This has reduced the expression for Ajs3 to a sum of three integrals over SU(2)
of the product of four irreducible characters of SU(2). The integral of a product
of four characters of SU(2) is an extension of the Clebsch-Gordan coefficients the
Racah coefficients, see [48]. They are functions of the four integers which label the
irreducible representations of SU(2) and in correspondence with the Clebsch-Gordan

coefficients we label them Cyg,5. Using this notation the term A3 is

227 _
Aoz = Z Yof;ﬂ7 BZ?UM D [Caﬁ'y(65+4) + Caﬁ'y(65+2) + Caﬁ’y(ﬁs)] (5'147)
afBy

This is a sum of generalised Littlewood-Richardson coefficients multiplying gener-

alised Clebsch-Gordan coefficients.

From the group theory we know that A;23 should be an integer but the expression

contains the phase ¢t %12l=17D) | Tf 4 term in the sum

Ya5y[Capr(6s+1) + Capy(6s+2) T Capr(6s))

is nonzero for one choice of a, 3 and -~ then it will be the same for any permutation
of a, B and ~. In particular exchanging o and - the term will have the conjugate

phase which ensures that the sum over all o, 3, 7y is an integer.

5.7.4 Physical representations of H in SU(6)

The solutions of equations (5.133) to (5.135) which define A7, Ajo and Aj93 com-
bined with the irreducible characters of S3 provide an analytic decomposition of
SU(6) into those representations physically relevant to the construction of a posi-

tion dependent spin basis.

To find the multiplicity of any particular physical representation of H the so-
lutions for A7, A1 and Aj93 which depend on s are substituted into the sum over
the permutation group (5.132) where the representation A of the permutation group

enters.

1 3 2
Ni, = Exgg(I)AI + 6X§3((12))A12 + 6X§3((123))A123 (5.148)
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5.7. The decomposition of SU (6)

The characters of the irreducible representations of Ss which appear in (5.148) are

recorded in figure 5.1.

| I (12) (123)
N EUE 1
&Y 12 0 1
Rl I S

Figure 5.1: Irreducible characters of S3

The total number of physical representations with spin s in the given represen-
tation of SU(6) is found by summing st)\ over the three irreducible representations
A of S,,.

2 1
N; = gAI + §A123 (5.149)

We see that in this case the simple solution for A; does not determine the total
number of physical representations as it did for representations of SU(4). Unfor-
tunately not only is the solution for SU(6) more complex but the factors that are

more difficult to evaluate, Ao and Aje3, are more significant.

5.7.5 Example: The (2,1) representation of SU(6) contains a spin-
1/2 multiplet which exhibits parastatistics.

With this example we can see how equation (5.148) is used to evaluate the exchange
sign. The calculation also provides an explicit case of parastatistics in a representa-
tion of SU(6). For three particles parastatistics corresponds to vectors transforming
according to the two dimensional irreducible representation of S3. The character of
this representation is recorded in the second row of figure 5.1. In this example both

f and A are labelled by the partition (2,1). From (5.148)

21
Ny oy = g A1 — gAizs (5.150)

As Xg?g’l)((12)) is zero we avoid needing to evaluate Ajs.
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Ar = YS(SQS’I) which is the number of ways of multiplying three tableau, consisting
of a single box for spin-1/2, and obtaining the tableau (2,1). This is the tableau

multiplication
L] X ] X [y

where the labels £ and y are used to distinguish the tableau. From the rules for

tableau multiplication, section 2.9.1, there are two distinct results with shape (2, 1)

x| y

Consequently Ay is 2.

To evaluate Ajo3 using equation (5.147) we must consider all possible ways of
multiplying three tableau and obtaining (2,1). As the representation is simple these

can be written out in full.

[ e X

] XX .

LLIXEIX -
L] XOXO

The dot denotes a tableau with no boxes. Except for the last case which we evaluated

for A the coefficients YO%}Y) are unity for each of these multiplication schemes. In

each case we must also evaluate the sum of coefficients

6 = Coz,[?*y(ﬁs—l—él) + Coz,[?*y(63+2) + Coz,[?*y(fis) (5'151)

for s = 1/2. This can be done by applying the Clebsch-Gordan formula twice.

(2,1) x0x0 C=0 (5.152)
(L) x(1)x0 C=0 (5.153)
2)x(1)x0 C=1 (5.154)
MHx1)x(1) C=1 (5.155)
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For the two non zero cases we must also consider the possible phase factors

i (=)

that can occur. For (1) x (1) x (1) as the three tableau are identical there is only
a single contribution of this type and the phase factor is unity. Using Y((f)’(ll)) 1) = 2

the contribution to Ajs3 from the tableau multiplication of this type is

Cy{ida =2 (5.156)

For (2) x (1) x 0 the tableau are all different and there are 6 such multiplications
depending on which tableau is assigned to which particle. In three cases the phase
i

is ei%ﬁ and in three it is e~ T The contribution to Ajo3 from the tableau multipli-

cations of this form is

(36i2?7T + 367Z%W)(é\ }/((22),(11))0) =3 (5.157)

Summing the two non zero contributions Ajs3 = —1.

We can substitute the two results for Ay and A;93 into equation (5.150) to obtain

the final result

@) _
Nyl =1 (5.158)

The representation (2,1) of SU(6) contains a single spin-1/2 subspace transforming
according to the two dimensional representation of S3. If we also use our results for
A and Aj93 in equation (5.149) we see that this is the only physical representation
of H which is contained in this irreducible representation of SU(6). Wavefunctions
on a position-dependent spin basis constructed from this representation will exhibit

parastatistics.

While this result is interesting we should not be surprised by it. There is a
simpler line of reasoning which leads to the same conclusion. If we notice that
the representation of SU(6) is labeled by the same tableau (2,1) which labels the
two dimensional representation of S3 we can see that vectors generated by these

symmetry conditions must necessarily transform according to the given irreducible
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representation of the symmetric group. While this can not be applied to larger more
complex tableau it does at least show that for spin-1/2 there exists a representa-
tion of SU(2n) where the position dependent basis transforms according to every
possible representation of S),. All types of parastatistics can be exhibited in some

position-dependent spin basis.

5.8 The decomposition of SU(2n)

Having tackled a more typical example in the decomposition of SU(6) we can ap-
ply the same techniques to evaluate the coefficients A, in the decomposition of an

irreducible representation of SU(2n) into physical representations of H.

The sum over H of a product of characters of H was defined in equation (5.70).
Inserting the characters of the physical representations of H and the irreducible
representation of SU(2n) into this formula we have an equation for the number of

representations B**(H) in the decomposition of the representation of SU(2n).

1
st)\ = Q—Sn ; QESTLX%R (K')An (5159)
where
1 2 2w .
A, = / | ADdS ... dO,_1d ... dd,

Qn?—l 0 0
—f
XSU(Zn) (""77 0,9, Gn)X%(fi, 65) (5.160)

Kk is a partition of n labelling a class of S, and r is the number of cycles in the class
k. The irreducible characters of S,, are known, as are the number of elements in
the classes of the symmetric group. Therefore the problem is to determine A, for a

general class k. With this stA can be written as a sum of known coefficients.
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5.8.1 Evaluation of A,

k = (K1,Kk2,...,kyr) is a partition of n. From equation (5.110) the eigenvalues of

elements of H connected to an element of S,, in the class k are of the form
6i27rp/fij ei&j/nj 6;/@ —¢j, or 6i27rp/fij eiwj/nj E;/”j _ éjp (5‘161)

where p is an integer and €; an eigenvalue of SU(2). There are 2x; eigenvalues for

each cycle j.

Using the symbols €, and £, for the eigenvalues we can write the Weyl character

formula for the representation of SU(2n).

f1+(2n 1) ~f1+(2n—1) _fi1+(2n-1) ~f1+(2n—1) f1+(2n 1) ~f1+(2n-1)
€11 <l 21 < €9 €r1 < Erky |
(2n— 1) ~(2n—1) (2n-1) ~(2n—1) (2n 1) ~(2n71)
| €11 €1, €91 B Y o By

With the Littlewood-Richardson theorem we split this ratio of 2n x 2n determinants

into a sum of products of determinants of size 2x; X 2x; one for each cycle in the

class k. Each of these irreducible characters of SU(2r;) is labelled by a vector of

integers (3.

| 5%-%(2@—1) N Nfiﬂ-(%j—1)|
j

| (2’%*1) g(_2’ij*1)|
J1 L

XSU(Qn K omen nyl B H
B.p"

(5.162)

Using this factorisation we can rewrite equation (5.160). The phase e %/%i can be

taken out of the determinants labelled by 87. We obtain the integral

27 2 .
/ / Z ’Yfl o 1] Agdor...do  (5.163)

B..8"

fiH

where Ag is an integral over one of the eigenvalues € of SU(2) defined by

2r |(6i27r/l'ij€1./’9j)ﬂ{-i—(?fij—l) . (eiQan/njgl'/l'ij)/3{_'_(2%],_1)|
Aﬁj = AA d¢] J T i :
0 |(ei27/53 ej/fi; )@= (eiQij/njEj/ﬂJ )2r=1)|

|E§S+1 E2_s+1|

L (5.164)
le; &l

Each of the x;’th roots of unity appear in the character labelled by B’. The char-
acter labelled by 3/ is real as taking the complex conjugate permutes the columns

in the determinant but a sign change in the numerator would be cancelled by the
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corresponding sign from the denominator.

Following this factorisation we will first solve the phase integrals in (5.163) then
find a general solution of integrals of the form of (5.164). To solve the phase integrals

we use the condition
e 20 = sgn(k)
As all elements of S, in the same class have the same cycle structure sgn(p) is a
function of the classes k of p in S,,. We use this to eliminate 6,
Op=—-0—---—0,1 (+7 if kodd)

Then solving the phase integrals either A, is zero or the factors 3 obey the condition

18 _ 18]

for all j (5.165)
Kj Koy

If A, is nonzero the 7 — 1 phase integrals produce a factor of (2)" ! which cancels

the similar term in €, and a phase (sgn(x))#"1/5r.

To solve the integral over SU(2) for Ag; defined in (5.164) we will first change

the variable to simplify the notation.
El/nj == e
Substituting into the equation for Aﬁj

(ei2ﬂ/ﬁjn)ﬁ'{+(2ﬁj71) o (ei27rﬁj/fijﬁ)ﬂ{+(2ﬁj71)|
|(ei27r/nj ,,7)(2@-71) . (ei27mj/’€jﬁ)(2’€j*1)|

271'/.%]‘ — |
Ay = & /0 (AR dip
Kj(25+1) ﬁnj(25+1)|
| |

In

(5.166)

(AA)" is the function of n that results from substituting for € in the volume element
AA. The integral is periodic with period 27/ kj and using this we return equation
(5.166) to an integral over SU(2). We apply the Littlewood-Richardson factorisation

to separate the different roots of unity in the character 3.

- 2T

2w ) Ry l

J —_ lF = l|a\

Ay = [ SVE B e (i)
(64

Kj (2S+1) g (2S+1) |

11 n n 7

— T
i U] UERTE)

ob+1 ﬁa11+1|

(5.167)
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where a! = (af, o)) label characters of SU(2). Clearly this integral is very close to
a product of x; 4 1 characters of SU(2) however to reduce the integral to a sum of
known coefficients we must factorise (AA)’. We cancel A’ and |5 7%/ | and multiply

top and bottom by A. Factorising A we find that

[r/2]
A= (@ =)= | Y@ 4yt (4Lt kg 0dd) | A
=1
where the sum is up to [r;/2] the integer part of x;/2 and A = (7—n). Substituting
this into equation (5.167) and incorporating the extra polynomial in 7 into the

character determined by s we have reduced the equation for Aﬂj to a product of

characters of SU(2).

2 . ;27 ) l
- B x i (il | [
hy = [V ARy SHERED) (T
0 « l:l...l’ij
kj(28)+2(y—1)+1 —n]-(2s)+2(y71)+1|

7
ln 7l

(5.168)

K
>0
y=1

This is the type of integral for which we can write down a solution using the gener-

alised Clebsch-Gordan coefficients.

i 2T

j 2 (525 Jlad])
Agi =Y YD e ; (i) Y Cat i (; (29)+2(y-1)) (5.169)
o y=1

In this case as previously o is defined to be (af — o).

5.8.2 Results for the decomposition of SU(2n)

Collecting together the results for the decomposition of SU(2n) the number of phys-
ical representations labelled by s and A contained in a representation f of SU(2n)

is
st = —S Z QK/Snxgn(H)A/‘i (5.170)
where & labels a class of S,,. The coefficients A, are

Ag = (sen(r)P Vvl 1] A (5.171)
B j=1
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with the condition

187 /kj = |B"| /sy for all j

and where Aﬂj is

a

. Kj
i 22 (07 o)) O

Ay =¥ SR S0 oy (5.172)
y=1

These results give an analytic decomposition of the representation of SU(2n) into
physical representations of H in terms of the Littlewood-Richardson and Clebsch-

Gordan coefficients and the characters of the irreducible representations of S,,.

While this solution of the decomposition problem is complete to evaluate stA by
hand we require both n and |f| to be small. This reduces the number of coefficients
Y and C required to a manageable quantity which can be calculated. For larger
values of n and |f| there do however exist algorithms for calculating the coefficients
involved in the decomposition. The decomposition of any particular representation
could then be computed using these results. If we consider the direct numerical de-
composition of representations of SU(2n) from chapter 4 the largest representations
for which the calculation was possible were for n = 2 and |f| = 6. While this could
have been improved with more efficient algorithms the fundamental problem was
that the dimension of the matrices grew as (2n)!f while the number of terms in the
symmetriser also grew as approximately |f|!. Therefore the analytic results provide

a significant computational advantage.

As we saw previously for k # I A, is small as most contributions cancel. We
can give a qualitative argument to show that this is inconsistent with all spin s
multiplets transforming according to the same irreducible representation S,. Each
of the integrals A, is independent of the representation A of S, used to define B**.
Taking the set of solutions of the integrals A, we can regard them as a character
of the symmetric group which is then decomposed into irreducible representations
A. With this picture we can consider what A, would look like if all multiplets with

spin s were to transform according to the representation X' of the symmetric group.
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In this case we would require
A = px3, (r) (5.173)

where p is an integer. Let us consider the case when the dimension of the subspace
with spin s is large, ie Ay is large. In this case p will also be large. However for
k # I equation (5.173) will not agree with the formulae (5.171) and (5.172) where
Ay is small. We see that for typical representations of SU(2n) multiplets with spin

s will transform according to different representations of .S,,.
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Chapter 6

Conclusions

In chapter 3 we tasked ourselves with discovering the relation between spin and the
statistics of particles in a position-dependent spin basis constructed using a general
representation of SU(2n). When we looked at the case of two particles with spin in
chapter 4 we saw the first difficulty with constructing a general spin-statistics con-
nection. The subspace W of vectors available to construct the position-dependent
spin basis is formed from s ® s multiplets with multiple values of spin. In the
Berry-Robbins construction the spin-statistics connection involves the natural as-
sociation between the completely symmetric representations of SU(4), labelled by
Young tableau with a single row, and the unique s ® s multiplet that the represen-
tation contains. In the general case this type of relationship is not possible as fixing
the representation of SU(4) does not fix the value of spin. We did however notice
that the representation of SU(4) does determine whether the spin of the multiplets

which make up W is integer or half integer.

Turning to the exchange sign we saw that in representations which contain sev-
eral multiplets with the same spin s half (£1 if the number of s multiplets is odd)
of the multiplets will transform according to each irreducible representation of Ss.
For these representations of SU(4) there can be no clear spin-statistics connection
as specifying the spin along with the representation is still insufficient to determine

the exchange sign.
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The decomposition of SU(2n) using the characters of the physical representa-
tions of H shows that quantum mechanics on a position-dependent basis generated
by a general representation of SU(2n) admits parastatistics. We saw that, at least
for spin-1/2, representations exist which display all types of parastatistics. An open
question is whether there exist representations containing all forms of parastatis-
tics for any spin. For any spin s and n particles position-dependent bases can be
constructed which produce either bosonic or fermionic statistics. For example the
representation of SU(2n) labelled by a tableau with one row and 2sn boxes exhibits
bosonic or fermionic statistics depending on whether s integer or half integer. If
instead we select the representation of SU(2n) labelled by a tableau ((2s + 1)n, 1™)
this will also contain a single spin s multiplet. However the symmetry conditions
of the representation, specifically the antisymmetry introduced in the first column,
will contribute an extra sign change under the exchange of any two particles. In this
representation half integer spin particles will be bosons and those with integer spin
fermions. In general representations of SU(2n) contain several multiplets with spin
s which transform according to different irreducible representations of S,,. Typically
such a representation will also contain subspaces with many different spins which
can be used to generate the position-dependent basis. The full decomposition of a
representation of SU(2n) into the physical representations of H is given in terms of

generalised Littlewood-Richardson and Clebsch-Gordan coefficients.

So what are the implications of these results for the spin-statistics connection?
To include such a relationship what we require is a rule for selecting a position-
dependent spin basis given a value of spin. If the rule is to associate a representa-
tion of SU(2n) to each spin then the chosen representation of SU(2n) must contain
unique representations of B** when restricted to . In order for a representation
f of SU(2n) to fix s there can only be a single way of multiplying n tableau s and
obtaining f. The simplest strategy for selecting such a set of representations is to

take the set of symmetric representations.

We see that the original scheme of Berry and Robbins is the most natural sys-

tematic approach to choosing a set of representations with which to construct the
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Chapter 6. Conclusions

position-dependent spin bases that is afforded by the representations of SU(2n).
This does not amount to a spin-statistics theorem, as Berry and Robbins have
already pointed out there still needs to be a convincing physical justification for
insisting that spin vectors behave according only to these representations. We have
however seen that extending the construction to general representations of SU(2n)
does not in general provide equally valid schemes for establishing a spin-statistics

connection.
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