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Abstract
An intuitive explanation of the connection between the quantum statistics of par-ticles and their spins has been sought since the early proofs of the spin-statisticstheorem were published in the 1940's. Recently Berry and Robbins [8] have sug-gested a new approach. They construct a position-dependent spin basis in whichexchanging the positions of identical particles automatically exchanges their spins.In this basis the spin-statistics connection can be derived from the singlevaluednessof the wavefunction. The position-dependent basis for n particles is constructedusing the Schwinger representation of spin which can be regarded as a choice ofrepresentation of the group SU(2n).In this thesis we generalise the construction to include all representations ofSU(2n). For n = 2 vectors that can be used to construct the position-dependentbasis are assembled directly using Young tableau and the sign of these vectors underthe exchange of the two particles determined. We �nd that for a typical represen-tations of SU(4) there are several subspaces of vectors with di�erent spins that canbe used to construct the position-dependent basis. The sign of vectors in these sub-spaces under the exchange of the particles is determined not only by the spin butalso by the symmetry conditions recorded in the Young tableau which labels therepresentation of SU(4).For n particles the decomposition into subspaces that can be used in the con-struction is achieved using the characters of the relevant groups. We see that typi-cal representations admit parastatistics. The number of subspaces of spin s whichtransform according to a given irreducible representation of Sn is written in termsof Littlewood-Richardson and Clebsch-Gordan coe�cients.
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Chapter 1
Spin-Statistics (and all that)
The spin-statistics theorem is a major milestone in the development of quantummechanics. Its discovery provided an explanation of the Pauli Exclusion Principlewhich had successfully predicted both the structure of the periodic table and thespectra of atoms. As the Exclusion Principle profoundly changed our view of theworld it can be di�cult to appreciate how radical the ideas of Pauli and Dirac werein their day. In fact the interest in and controversy around the spin-statistics theo-rem has never really disappeared since its inception. In this chapter we will followthe development of our current understanding of spin-statistics and the recent at-tempts to �nd examples of the violation of the spin-statistics theorem. All this isthe physical background to the constructions of non-relativistic spin statistics thatwill be made in the subsequent chapters.
1.1 The discovery of spin-statisticsThe most complete history of the spin-statistics theorem is the book of Duck andSudarshan [17]. Their treatment reproduces the signi�cant papers along with com-ments and explanations and is also an enjoyable read. If I can recommend my versionit is only that I will be briefer but anyone with an interest in the spin-statistics the-orem will bene�t from reading their account.1



Chapter 1. Spin-Statistics (and all that)1.1.1 Pauli's exclusion principleIt is the Pauli exclusion principle, a consequence as we will see of the spin-statisticstheorem, that was �rst used to explain the structure of the periodic table and pro-vided a stepping stone in the discovery of the spin of the electron. Stoner realisedthat by adding an extra \spin" quantum number to label electron states he couldexplain the 2; 8; 18 family structure of the periodic table. This inspired Pauli [44] toproduce his statement of the Exclusion Principle,There can never be two or more equivalent electrons in an atom. Theseare de�ned to be electrons for which the value of all quantum numbersis the same. If, in the atom, one electron occurs which has quantumnumbers with these speci�c values, then the state is occupied.Pauli anticipated a \deeper foundation" for his exclusion principle which would re-quire a better understanding of quantum theory. He continued to pursue these ideasduring his research leading eventually to the canonical relativistic argument for thespin-statistics theorem that we have today.As a consequence of the spin-statistics theorem it is still Pauli's exclusion prin-ciple that has the most signi�cant and far reaching implications. Quite literallywithout this seemingly arbitrary rule for electrons the world as we know it wouldnot exist. The importance of the exclusion principle may explain the calibre ofphysicists from Heisenberg, Dirac and Fermi to Feynman that contributed to thedevelopment of spin-statistics. It certainly explains why Pauli was later awardedthe Nobel Prize for his insight.1.1.2 Spin and statisticsDuring the discovery of the exclusion principle the additional quantum number at-tributed to the electron had no physical interpretation. Goudsmit and Uhlenbeck[52] �rst proposed that this quantum number be assigned to an \eigen-rotation ofthe electron". They realised that a spherical rotating hollow sphere of charge wouldhave the required gyro-magnetic ratio for spin. The di�culty with this view, that2



1.1. The discovery of spin-statisticsthe surface velocity would be greater than the speed of light, was solved later whenDirac introduced the point electron realising the spin as a purely intrinsic propertyof elementary particles. The electron spin was immediately applied to explain thelevel splitting in atomic spectra.With the discovery of spin we have one half of spin-statistics. The statisticswe refer to is the statistical mechanics of a gas of identical elementary particles.Initially it was Bose [11] who derived the probability distribution of a photon gasby dividing phase space into cells of volume h3, where h is Planck's constant. Anynumber of quanta are assigned to the states of the gas. After corresponding withBose, Einstein was inspired to extend the ideas to an ideal gas of identical molecules.The Bose-Einstein probability distribution they derive isNr = 1e�(Er��) � 1 (1.1)where � � 1=kTand � is the chemical potential of the gas. Nr is the average occupation numberof the state r which has energy Er. From this probability distribution both theenergy spectrum and thermodynamic properties of the gas are then calculated. Inthe series of papers, [18] [19] [20], the phenomenon of Bose-Einstein condensationwas also discovered.Independently both Fermi [21] and Dirac [15] solved the statistical mechanics ofan ideal gas of identical particles which obey the Pauli exclusion principle. Eachstate is now either occupied by a single particle or is unoccupied. The Fermi-Diracprobability distribution is Nr = 1e�(Er��) + 1 (1.2)Again the probability distribution allows the energy spectrum and thermodynamicproperties of the gas to be calculated. 3



Chapter 1. Spin-Statistics (and all that)The properties of these two ideal gases are clearly very di�erent. At low temper-atures a Fermi-Dirac gas �lls up all the lowest energy states while a Bose-Einsteingas condenses as the majority of the particles enter the ground state with zero en-ergy and zero momentum. With an understanding of particle spin and statistics weare in a position to state the spin statistics theorem.Bosons, particles with Bose-Einstein statistics, all have integer spin whileall fermions have half integer spin.At the time this was a remarkable experimental fact. There are two classes of parti-cles, those that obey or do not obey the Pauli exclusion principle. These two classespossess very di�erent properties. However the membership of the classes is decidedby a quantum number, spin, which seems totally unrelated.1.1.3 The symmetrisation postulateThe symmetrisation postulate was discovered independently by both Dirac [15] andHeisenberg [35] in 1926.States containing several identical elementary particles are either sym-metric or antisymmetric under permutations of the particles accordingto the particle species. Bosons are symmetric and fermions are antisym-metric. States which cannot be represented by wave functions with therequired symmetry are forbidden.We will summarise Dirac's argument which appears in the same paper in which hederives the properties of an ideal Fermi-Dirac gas. His paradigm is a system of twoelectrons orbiting an atom. (mn) denotes the state in which one electron is in theorbit labelled by m and the other in the orbit n. He then asks the question: are(mn) and (nm) two di�erent states?His argument proceeds as follows. The states (mn) and (nm) are physicallyindistinguishable. If both states correspond to separate rows or columns in thematrices which operate on the system then the amplitude for the two transitions4



1.1. The discovery of spin-statistics(mn)! (m0n0) and (nm)! (n0m0) can be individually calculated. They would cor-respond to two di�erent matrix elements. However as the transitions are physicallyindistinguishable only the combined intensity should be able to be determined byexperiment. So if the theory is to enable only observable quantities to be calculated,(mn) and (nm) must count as a single state (we will see later that this may notnecessarily be the case).Taking the states (mn) and (nm) to be physically indistinguishable has conse-quences. Only operators that are symmetric in the positions and momenta of thetwo electrons can be represented by a matrices, as for an operator AA(x1; x2)(mn) = A(x1; x2)(nm) = A(x2; x1)(mn) (1.3)However it is possible to represent the physical properties of the system using ma-trices which depend symmetrically on the electrons coordinates.Turning to the eigenfunctions for the two-electron system and neglecting theinteraction between the electrons, the eigenfunction for the state (mn) can be con-structed from a product of single electron eigenfunctions,  m(1) n(2). There is,however, a second eigenfunction  m(2) n(1) which also corresponds to the samestate and two independent eigenfunctions would give rise to two rows and columnsin the matrices. What is required is a set of eigenfunctions  mn of the form mn = amn m(1) n(2) + bmn m(2) n(1) (1.4)where the coe�cients amn and bmn are constants. The set should contain only one mn corresponding to the states (mn) and (nm), so applying a permutation � of theelectrons to the eigenfunction, � mn = c  mn (1.5)where c is a phase factor. This set of eigenfunctions must be su�cient to obtain amatrix representation of any operator symmetric in the coordinates, so thatA mn = Xm0n0Amnm0n0  m0n0 (1.6)5



Chapter 1. Spin-Statistics (and all that)where  m0n0 is also in the given set of eigenfunctions.Dirac �nds that there are only two solutions, either amn = bmn or amn = �bmn.Either set of eigenfunctions gives a complete solution of the problem and this choicecannot be determined from the quantum theory. The result extends to any numberof electrons, the sets of eigenfunctions are then either symmetric or antisymmetricunder permutations of the electrons. As an antisymmetric eigenfunction vanishes fortwo electrons in the same orbit there can be no more than a single electron in eachorbit and we see that the symmetrisation postulate predicts the exclusion principle.Dirac's argument insists that all states of identical particles be either symmetricor antisymmetric. Later we will be considering parastatistics in which the states ofidentical particles are allowed not to be entirely symmetric or antisymmetric. Asthese violate Dirac's result so we should be clear about the essential requirementsof his argument. The �rst condition was that those states corresponding to per-mutations of the electrons should be physically indistinguishable. This is a strongcondition on the states but on its own it is insu�cient to deduce the result. Theargument also requires the assumption that indistinguishable states are representedby a single vector, up to a phase factor. This was introduced in order to requirethere to be a single eigenfunction  mn corresponding to both states.Messiah and Greenberg [43] considered the situation where only the indistin-guishability condition applies to states. Firstly they �nd that all physical operatorsA on the states must be permutation invariant[�;A] = 0 (1.7)As the Hamiltonian operator is an observable it also commutes with permutations.Consequently evolving A for a time t we obtain U y(t)AU(t) which is also permu-tation invariant if A is. They then show that for any vectors in a subspace whichtransforms according to an irreducible representation of the permutation group theexpectation value of U y(t)AU(t) is independent of the particular choice of vector.This is interesting as for more than two particles there are irreducible representa-6



1.2. Relativistic quantum �eld theorytions of the permutation group with a dimension of two or more. In this subspaceit is then possible to choose two di�erent vectors to represent a state. The choice ofvector can't be determined by physical observations.In the language of Dirac if we considered a three electron state of an atom (lmn)then a wavefunction can be written as a linear combination of all the permutations� of the function  l(1) m(2) n(3), �lmn =X� c��  l(�(1)) m(�(2)) n(�(3)) (1.8)If the constants c�� are chosen such that for a permutation ��  �lmn = T (�)��  �lmn (1.9)where T (�) is an irreducible representation of S3, then  �lmn transforms according tothe irreducible representation T . This is a generalisation of equation (1.5). In thatequation we assumed there could only be a single vector to represent the electronstate. If we have selected constants c�� so that T is the two dimensional irreduciblerepresentation of S3 then the expectation values of an observable for all  �lmn in thetwo-dimensional subspace will be equal. The indistinguishability of the electronsforces us to choose vectors which belong to irreducible representations of the per-mutation group but there could still be more than one vector for a given (lmn) inthis subspace.
1.2 Relativistic quantum �eld theoryQuantum �eld theory was conceived by Dirac [16]. He worked from the canonicalcommutation relations to de�ne particle creation and annihilation operators. Theseoperators add or remove quanta from states which can be multiply occupied andso the theory is therefore a �eld theory of bosons. In order to de�ne a �eld theoryfor fermions Jordan and Wigner [39] replaced the commutation relations for thecreation and annihilation operators with anticommutation relations. Using theseoperators they de�ne antisymmetric states and wavefunctions which obey the Pauli7



Chapter 1. Spin-Statistics (and all that)exclusion principle. So in �eld theory the spin-statistics relation becomes a connec-tion between the choice of commutators or anticommutators for the creation andannihilation operators of the �eld and the spin of the particles represented by the�eld.1.2.1 Pauli's proofsWhile the original �eld theories were non-relativistic, by quantising the Klein-Gordon equation Pauli and Weisskopf [46] produced the canonical relativistic quan-tum �eld theory. Pauli then used this relativistic quantum �eld theory to attempthis �rst proof of the spin-statistics theorem. The idea was to show that the relationbetween spin and statistics is a necessary consequence of the postulates of relativisticquantum �eld theory. In this respect all the �eld theory proofs are alike althoughthey di�er depending on the precise axioms of the �eld theory used.Pauli's �rst proof was not conclusive. He himself questioned the validity of sev-eral of the operations he used and it was some years before he reached what is nowregarded as his orthodox proof of the spin-statistics relation. While Pauli began hiswork on the spin-statistics relation Iwanenko and Socolow [38] quantised the Diracequation using anticommuting creation and annihilation operators. They concludedthat attempting to apply Bose statistics to the Dirac equation inevitably producesproblems and so Bose statistics are most natural for the scalar relativistic equationwhile Fermi statistics are natural for Dirac's relativistic equation.Before discussing Pauli's second proof we should note some of the signi�cantideas contributed by less recognised authors. Fierz [25] introduced the notion ofrepresenting elementary particles with irreducible relativistic spinors which Pauliwould later generalise. Belinfante's unique approach [7] was to require invarianceunder the charge-conjugation transformation. This was not only novel but, interest-ingly, the argument is now used in reverse, the proof of the spin-statistics theorembeing the foundation for the proof of the PCT theorem. DeWet [14] also produceda proof based on canonical �eld theory in which he was the �rst to identify one of8



1.2. Relativistic quantum �eld theorythe crucial assumptions on which many proofs from relativistic �eld theory depend,[�(x); �y(y)]+ � 0 for (x� y) spacelikewhere � is a �eld operator. It would be �fteen years before this was proved.That Pauli's name is so strongly linked to the spin-statistics theorem is due to his1940 proof [45] based on a classi�cation of the spinor representations of the properLorentz group. Although the proof relies on �eld theory we can see the origin of thespin-statistics connection in the representations of the spinors. The proper Lorentzgroup is the continuous group of linear transformations which leaves invariant thescalar product 3Xk=0 xkxk = x21 + x22 + x23 � x20 (1.10)Pauli uses the spinor representations of the Lorentz group. A basic spinor is de�nedfrom a four-vector v by the relationU� _� = v��� _�� (1.11)�� are the Pauli matrices with �0 de�ned to be the identity matrix. The groupmultiplication law is then the normal matrix multiplication for the spinor matrices.The inverse relation to return a four-vector from a spinor is given byv� = �12��� _�U� _� (1.12)Spinor indices are raised and lowered with the alternating tensor ��� = ���� with�12 = �12 = 1 etc. A general spinor U _� _� _�:::��
::: can be characterised by two \angularmomentum quantum numbers" (j; k) where there are 2j upper dotted indices and2k lower indices.Pauli divides the representations into classes depending on their properties whenthe representation is restricted to the subgroup of space rotations. If we take a rep-resentation U(j; k) where j+k is half integral, then applying a space rotation by 2�vectors in the representation space undergo a sign change. In a representation where9



Chapter 1. Spin-Statistics (and all that)j+k is integral vectors in the representation space don't change sign under a 2� ro-tation. Pauli refers to these representations as single- or double-valued. The spinorrepresentations U which transform as double-valued representations of the Lorentzgroup correspond to particles with half-integral spin, while the single-valued repre-sentations correspond to those with integral spin.The single-valued representations are further classi�ed into representations wherej and k are both integral, U+, and those where both j and k are half integral, U�.The direct product of two representations decomposes into a sum of irreduciblerepresentations in a particular class,U+U+ = U+ U�U� = U+U+U� = U�U+ = U� (1.13)For the double valued representations U+� refers to representations where j is in-tegral and k half integral and U�� to j half integral k integral. The multiplicationtable for these representations isU��U�� = U+ U��U�� = U�U��U+ = U�� U��U� = U�� (1.14)Pauli considers both commutation and anticommutation relations for the fourclasses of spinor �elds. In either case he postulates the brackets of the �eld operatorscan be expressed in terms of an invariant D-function and the derivatives of thatfunction, [U(x); U (x0)]� � D(x� x0) (1.15)where � on the bracket refers to anticommutation or commutation relations respec-tively and U is the complex conjugate of U . The D-function is given byD(x) = Z d3p(2�)3 ei~p:~x sin!x0! (1.16)~x is the normal three vector position and similarly ~p is the momentum. The D-function is uniquely determined by the conditions,(��m2)D = 0 D(~x; 0) = 0 @0Djx0=0 = �(~x) (1.17)10



1.2. Relativistic quantum �eld theoryUsing the rules for multiplying the spinor representations, one can �nd conditions onthe brackets. For half-integral spins with either commutation or anticommutationrelations [U��; U��]� = [U��; U��]� = U� (1.18)To construct a spinor in U� from D and its derivatives only the odd derivatives ofD can appear. For integral spins the brackets must have the opposite form[U�; U�]� = [U�; U�]� = U+ (1.19)These brackets correspond to only even derivatives of D. Pauli then symmetrisesthese relations for permutations of the positions, x$ x0.X = [U�(x); U�(x0)]� + [U�(x0); U�(x)]� (1.20)X is therefore even under x $ x0. He shows that the odd derivatives of the D-function are even under a permutation of the positions, ~x $ ~x0 but odd underx0 $ x00. Consequently for integral spins the X vanishes under symmetrisation.This excludes the possibility of anticommutation relations for integral spin particlesbecause at x = x0 the expression for X would be positive and could therefore onlyvanish for �elds which are identically zero.For half integral spins the derivatives of the D-function are even under the per-mutation x$ x0. To rule out commutation relations Pauli uses an argument due toFierz that the energy of the system is only positive when anticommutation relationsare chosen. In this way he establishes the connection between spin and particlestatistics without it being necessary to �x the particular spin of the particles inquestion. There are still problems with the proof; as with all proofs of the timethe manipulations of the �eld are not shown to be valid and interactions are notincluded. However it was a great advance and also includes a discussion of symmetryconditions which anticipated the PCT theorem but which I have omitted from thisoutline.The aspect of Pauli's proof of most interest in this thesis is his use of double-valued representations. When we discuss the construction of Berry and Robbins in11



Chapter 1. Spin-Statistics (and all that)Chapter 3 we will also encounter double-valued representations where, under restric-tion to a subgroup of permutations, vectors of half-integral spin change sign. Thegroup used is however not the Lorentz group but the group of special unitary matri-ces. The analogy is very weak but at least in a historical context it is an interestingconnection between the two approaches.1.2.2 Axiomatic proofsWhile Pauli is widely credited with the derivation of the spin-statistics theorem themost complete proofs are due to L}uders, Zumino [51] and Burgoyne [13]. The mostmemorable reference for a proof of the spin-statistics theorem is however the book ofStreater and Wightman [50]. Their proof also follows the axiomatic approach whichL}uders, Zumino and Burgoyne introduced.Before these axiomatic proofs were developed there were two other contributionsto the history of the spin-statistics theorem that should be noted. In 1949 Feynman[23] published a paper purporting to show that only the observed spin-statistics con-nection was compatible with calculations of the vacuum survival probability madeusing the Feynman rules. The approach was very novel but an analysis by Paulishowed the theory required an inde�nite metric on the Hilbert space while a basicpostulate of the �eld theory is that the metric is positive de�nite. Undeterred thisserved as a basis for Feynman's ideas for an elementary proof. Schwinger [49] pub-lished a proof based on the requirement that relativistic quantum �eld theory betime reversal invariant. In the later proof of L}uders and Zumino and also in Streaterand Wightman's book this is reversed so that both the spin-statistics theorem andPCT theorem rest on the basic axioms of relativistic �eld theory.In their book Streater and Wightman follow the proof of Burgoyne. The work ofL}uders and Zumino applies only to spin 0 and 1=2 although it has the advantage ofclearly separating the PCT and spin-statistics theorems. Both L}uders and Zuminoand Streater and Wightman make use of the Hall-Wightman theorem. As thistheorem is often used in proofs of the spin-statistics connection using relativistic12



1.2. Relativistic quantum �eld theoryquantum �eld theory I will state it here.Theorem: Hall-Wightman 1.2.1. The vacuum expectation value of the productof two �elds h0j�(x)�(x0)j0i = F (x� x0)is analytic in (x� x0) and continuable to all separations.In Streater and Wightman the discussion of such results extends over most of achapter, including it here is only designed to give a 
avour of the problems to betackled in order to produce rigorous proofs.As well as having a full understanding of the allowed manipulations of �eld oper-ators the other essential building block of these proofs are the axioms of relativisticquantum �eld theory. The mathematical discussion of Streater and Wightman istoo involved for an introduction so instead I will refer to the original postulates ofBurgoyne.1. The �eld theory must be relativistically invariant.2. The theory contains no negative energy states. (This is equivalent to requiringthe vacuum state to be the lowest energy state.)3. The metric in Hilbert space is positive de�nite.4. Distinct �elds either commute or anticommute for space-like separations.He then shows that for any �eld with these properties the \wrong" connection be-tween spin and statistics implies that the �eld vanishes. For readers with someknowledge of �eld theory the proof is structured as follows;From �eld operators ��(x), which transform according to an irreducible repre-sentation of the homogeneous Lorentz group indexed by �, we de�ne tempered �eldoperators �(f) = Z d4xf�(x)��(x) (1.21)13



Chapter 1. Spin-Statistics (and all that)where the f�(x) are a set of test functions. F and G are de�ned to be the vacuumexpectation values F��(�) = h0j��(x)��(x0)j0i (1.22)G��(�) = h0j��(x)��(x0)j0i (1.23)with � the relative position (x � x0). F and G can be extended to functions ofa complex four vector z = � � i� which are analytic for z2 = zjzj in the complexplane cut along the positive real axis. Burgoyne shows that for space like separations�2 < 0, G��(��) = (�1)2sG��(�) (1.24)where s is the particle spin. The \wrong" sign commutation relations for the �eldoperators at space-like separations areh0j��(x)��(x0) + (�1)2s��(x0)��(x)j0i = 0 (1.25)We have used the fourth axiom of the �eld theory that the �elds commute or anti-commute for space-like separations. Equation (1.25) implies thatF��(�) + (�1)2sG��(��) = 0 (1.26)Using (1.24) we see that F��(�) +G��(�) = 0 (1.27)By analyticity F�� + G�� vanishes everywhere in the cut � plane. To evaluate thelimit � ! 0 the tempered �elds are used. From equation (1.26)h0j�(f)�(f) + �(g)�(g)j0i = 0 (1.28)As the Hilbert space metric is positive de�nite we conclude thatj�(f)j0ij2 + j�(g)j0ij2 = 0 (1.29)Consequently the tempered �eld operators �(f) and �(g) are identically zero for alltest functions f and g. The �eld is therefore zero and the \wrong" commutation14



1.3. Feynman and the elementary proofsrelations are untenable.The canonical proof of the spin statistics theorem given by Streater and Wight-man is a combination of the proof of Burgoyne with the spinor proof of Pauli, thespinors being used to prove the equivalent of statement (1.24). It has the advantageover the Pauli proof of being rigorous with theorems for all the necessary manipula-tions of the �eld operators also proved. It is probably for this reason that amongstsuch a wide range of approaches it has achieved the status of the de�nitive proof.1.2.3 Criticisms of the �eld theory proofsIn the outlines of the proofs of the spin-statistics theorem from relativistic quantum�eld theory I hope I have been fair both to their achievements and to the degree ofthe formalism that they necessarily introduce. The axiomatic approach of Streaterand Wightman can appear to reduce the spin-statistics relation to a mathemati-cal problem involving the existence of an analytic continuation of certain tempereddistributions in convex cones of four-dimensional space time. If there is a physicalresult obscured by this analysis the best candidate is the connection between spinand the double- or single-valued representations of the proper Lorentz group. Thisis not however used in all the proofs so it is hard to see it as a physical basis forthe spin-statistics connection. If from these relativistic arguments we were to tryand explain the spin-statistics theorem what we can say is that another connectionbetween spin and statistics is incompatible with the axioms of relativistic quantum�eld theory and we must be satis�ed with that.
1.3 Feynman and the elementary proofsIn Feynman's lectures on physics [22] he discusses the spin-statistics connection andasks the following question:\Why is it that particles with half-integral spin are Fermi particleswhereas particles with integral spin are Bose particles? We apologise15



Chapter 1. Spin-Statistics (and all that)for the fact that we cannot give you an elementary explanation. An ex-planation has been worked out by Pauli from complicated arguments ofquantum �eld theory and relativity. He has shown that the two mustnecessarily go together, but we have not been able to �nd a way of re-producing his arguments on an elementary level. It appears to be one ofthe few places in physics where there is a rule which can be stated verysimply, but for which no one has found a simple and easy explanation.This probably means that we do not have a complete understanding ofthe fundamental principle involved."This question has inspired several attempts to formulate such an elementary argu-ment and it is in this spirit that Michael Berry and Jonathan Robbins proposedtheir non-relativistic construction of the spin-statistics connection with which therest of this thesis is concerned. Here we will review other approaches that have beentaken to the question. The main critiques of these proposals have been provided byHilborn [36] and Sudarshan and Duck [17].1.3.1 Geometric rotationProbably the most well known of the \elementary" schemes are the geometric ar-guments of Bacry [4] and Broyles [12]. The simple situation described by Bacry issu�cient to demonstrate the essential idea. Unfortunately both arguments containthe same critical 
aw.Bacry considers the two electron system where one electron is located at coordi-nates (x; y; z) = (a; 0; 0) with spin +1=2 and the second electron at (�a; 0; 0) withspin �1=2. The single particle wavefunctions are A = 0@ �(x� a)�(y)�(z)0 1A  B = 0@ 0�(x + a)�(y)�(z) 1A (1.30)and the two electron wavefunction is written	AB(1; 2) =  A(1) B(2)�  A(2) B(1) (1.31)16



1.3. Feynman and the elementary proofsWe have not as yet chosen whether the wavefunction for the system will be symmetricor antisymmetric. Exchanging the two particles	AB(2; 1) = �	AB(1; 2) (1.32)A rotation by � about the y axis leaves the two electron state unchanged.
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If we act on the single electron wavefunctions with the rotation about the y axisRy(�) = e�i�Jy Ry(�) A =  B Ry(�) B = � A (1.33)So acting on the two electron wavefunctionRy(�)	AB(1; 2) = ��	AB(1; 2) (1.34)Bacry then makes an error which invalidates the proof, the proof of Broyles alsofails for a similar reason. As the two electron state is invariant under the rotationRy(�) he requires the same of the wavefunctionRy(�)	AB(1; 2) = 	AB(1; 2) (1.35)If this were the case it would require the wavefunction to be antisymmetric which isthe spin-statistics relation.Unfortunately the invariance of the state under a discrete symmetry transfor-mation does not rule out the possibility of a sign change in the wavefunction. Anexample of the phenomena is a 2� rotation of a spin-1=2 state of an electron. Thestate is invariant but the wavefunction changes sign. As the sign of 	A;B(1; 2) un-der the rotation Ry(�) cannot be determined the argument fails to provide a spinstatistics connection. 17



Chapter 1. Spin-Statistics (and all that)1.3.2 Feynman's Dirac lectureIn 1986 Feynman, despite his long illness, gave the Dirac memorial lecture in whichhe sketched an elementary argument for the spin-statistics connection [24]. He wasinspired by the unexpected behaviour of tethered classical objects under rotations.The lecture demonstration was rotating a full wine glass through 4� with out spillingthe water. The same idea is contained in a trick with a belt which is easier to de-scribe. If a belt is �xed at one end while the other end is connected to an objectrotating the object by 2� introduces a twist to the belt which cannot be undone bytranslating the object. However the twists in the belt that result from rotating theobject by 4� can be removed by translating the object whilst keeping its orientation�xed. Figure 1.1 shows a schematic of the belt trick though it is best veri�ed person-ally. In the �gure a straight belt is rotated through 2� then 4�. Finally keeping theorientation of the black cube �xed whilst translating along the path shown removesthe twists in the belt.

Figure 1.1: The First Belt TrickThis classical paradox suggests that a rotation by 2� does not always return anobject to its original state and therefore that the change in sign of the wavefunctionof spin-1=2 particles is not unreasonable. In their discussion of these ideas Sudar-18



1.3. Feynman and the elementary proofsshan and Duck warn the unwary not to be deceived by such party tricks. In theirwords they are \pure old fashioned snake-oil peddling". However they concede thatin Feynman's hands they were mesmerising.With this model Feynman also included two others in which the exchange ofidentical particles reproduces the spin-statistics connection. One model uses a pairof composite particles each consisting of a spin zero electric charge e and a spinzero magnetic monopole of charge g. However as an explanation of spin-statisticsrequiring elementary particles to have the additional unphysical property of sourcinga magnetic �eld is not compelling.The third model makes use of a second belt trick, see �gure 1.2. In the trickwhen two particles connected by a ribbon are exchanged the ribbon acquires a twist.To complete the exchange one of the particles must be rotated by 2�. The argu-ment is used to demonstrate that the operation of exchange entails a hidden rotationby 2�. Feynman uses this rotation to determine the e�ect of exchange on particlestates from which he acquires the spin-statistics relation. The reasonable objectionraised by Duck and Sudarshan is that we are required to postulate that elementaryparticles are connected by ribbons a property which is needed for no other purpose.While the classical argument suggests a spin-statistics like result a derivation of thespin-statistics theorem should be based on more natural physical properties.In his lecture Feynman also returned to his original �eld theory argument. Heused the time reversal property of the Dirac spinor to show that Fermi-Dirac statis-tics are necessary if the S matrix is to be unitary. This use of the PCT theoremto prove the spin-statistics theorem reverses the status of the theorems and requiresthat the PCT theorem be proved without the use of a spin-statistics relation. Intheir analysis of Feynman's argument Sudarshan and Duck conclude that the in-ternal consistency of the Feynman rules for perturbation theory is not a su�cientfoundation for the spin-statistics theorem.Feynman's comments on the second belt trick were inspired by a rigorous ge-19



Chapter 1. Spin-Statistics (and all that)
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Figure 1.2: The Second Belt Trickometric argument of Finkelstein and Rubinstein [26]. Finkelstein and Rubinsteintreat nonlinear �eld theories in which there exist modes of the �eld, called kinksor solitons, which can not be deformed into each other and which posses a con-served integer particle number. They de�ne an exchange operation in which twosoliton antisoliton pairs are created, the solitons exchanged, and the new pairs anni-hilated. The eigenvalues of the exchange operator are �1 corresponding to even orodd statistics. This exchange operation is shown to be homotopic to a 2� rotationof the �eld which implies solitons with half integer spin have odd statistics. Thosesoliton species which can undergo odd exchanges also admit even exchanges. To �xthe statistics and so the spin of a given type of soliton they note that all solitonsof the same type must produce the same sign under exchange and the sign can notchange over time. Consequently given a universe of solitons measuring the exchangesign for a pair �xes the exchange property of all solitons of that type for all time.Parastatistics, which will be discussed later, is excluded in this model.
1.3.3 Recent candidates for an elementary proofBalacharandran et al [6] (see also [5] for a brief account) have suggested a develop-ment of the argument of Finkelstein and Rubinstein applied to point particles. Theirproof avoids reference to �eld theory or relativity. However the argument makes use20



1.3. Feynman and the elementary proofsof an in�nite dimensional con�guration space. The con�guration space of a singleparticle is R3 � F 3(SO(3)) where SO(3) is the group of rotations and F 3 is theset of all orthonormal frames with a �xed orientation in 3 dimensions, this deter-mines the particles spin. Antiparticles are described by a state in R3 � F 3(SO(3))where the orthonormal frames in F 3 have the opposite orientation to the particleframes. For states of many identical particles the con�gurations where spins andpositions have been exchanged are identi�ed and pairs of particles are not allowedto occupy the same position. The e�ect of particle antiparticle annihilation is in-cluded by associating con�gurations where particles and antiparticles coincide withthe con�guration space of reduced particle numbers. Assuming certain continuityconditions on this con�guration space they show that exchange for particles withspin is homotopic to a 2� rotation of one of the particles which is the spin-statisticsconnection. Establishing this homotopy makes use of the creation and annihilationof particle antiparticle pairs. They suggest that the analogue of these arguments in�eld theory will involve the physics of solitons although the question is not resolved.Sudarshan and Duck in the �nal chapter of their book [17] include their ownelementary argument. They replace the postulates of relativistic quantum �eldtheory with conditions on the kinematic parts of the Lagrangian for the individual�elds. The Lagrangian must be1. derived from a local Lorentz invariant �eld theory for �elds which are each a�nite dimensional representation of the Lorentz group.2. in the Hermitian �eld basis.3. at most linear in the �rst derivatives of the �elds.4. at most bilinear in the �elds.They then show that the \wrong" spin-statistics connection is incompatible withrotational invariance of the Lagrangian.This proof also seems to fail to provide the sought after elementary physicalunderstanding of the spin-statistics connection that Feynman requested. In their21



Chapter 1. Spin-Statistics (and all that)discussion of their result Duck and Sudarshan say the simpli�cation they introduceis the use of rotation invariance rather than time reversal invariance in Schwinger's�eld theory proof. However the essential structure remains the same, they showthat only the observed spin-statistics connection is compatible with a given set ofrequirements for the �eld as in the axiomatic proofs. Although they claim the proofis non-relativistic the requirement that the �eld be Lorentz invariant is still retained.In summary the search for an elementary proof of the spin-statistics connectionhas produced many interesting and signi�cant analogues of the spin-statistics con-nection. Unfortunately none are conclusive. Some require additional unphysicalproperties to be postulated for elementary particles while others remain re�nementsof the relativistic argument.
1.4 ParastatisticsA good review of the theories which allow a violation of the spin-statistics connec-tion is provided by Greenberg [31]. Here we will tackle only a couple of the topicsnamely, Green's parastatistics, which is the original example of parastatistics, andthe theory of quons, which has particular relevance to experimental attempts to lookfor small violations in particle statistics.1.4.1 Parabosons and ParafermionsParastatistics, proposed by Green [30], is a theoretical generalisation of Bose andFermi statistics. Bose or Fermi statistics are de�ned by the choice of commutationor anticommutation relations for the creation and annihilation operators of particlestates. The number operator for a state k can be writtennk = 12[ayk; ak]� + const. (1.36)where + on the bracket refers to the choice of anticommutation relations and �to commutation relations for the operators a. The operator ayk creates a particle22



1.4. Parastatisticsin the state k and ak is the corresponding annihilation operator. The bracket iseither a commutator or an anticommutator according to the type of statistics. Thecommutator of the number operator and creation operators is independent of thechoice of Bose or Fermi statistics.[nk; ayl ]� = �klayl (1.37)We can generalise the de�nition of the number operator to use the operators ayk andam annihilating a particle in state m and creating one in state k. Then substitutingthis number operator into equation (1.37) we �nd Green's trilinear commutationrelations. [[ayk; am]�; al]� = 2�mlayk (1.38)Selecting the commutator or anticommutator in this relation will de�ne two alter-native cases of parabose or parafermi statistics. As these commutation rules aretrilinear the de�nition of the vacuum stateakj0i = 0 (1.39)is insu�cient to allow all states to be calculated. An additional condition on single-particle states is included to resolve thisakayl j0i = p �klj0i (1.40)To �nd solutions of these commutation rules Green made the following ansatz.Let ayk = pX�=1 b(�)yk ak = pX�=1 b(�)k (1.41)The parabose solutions are de�ned by taking the pair of operators b(�)k , b(�)k to com-mute if � = � but anticommute if � 6= �. The parafermi statistics are found byswapping the use of commutation and anticommutation relations in the de�nition.The ansatz provides a set of parabose and parafermi statistics for each integer p.For parabosons p is the maximum number of particles which can occupy an antisym-metric state, while for parafermions it is the maximum number of particles whichcan occupy a symmetric state. These parastatistics were the �rst alternative to the23



Chapter 1. Spin-Statistics (and all that)observed statistics of Fermi-Dirac or Bose-Einstein to be de�ned.The irreducible representations of the symmetric group are labelled by Youngtableau, discussed in greater detail in chapter 2.
We will see later that the tableau record symmetry conditions. Single particle statesare assigned to boxes in the tableau then a tensor product of n single particle statesis symmetrised with respect to the states in the same row then antisymmetrised withrespect to those in the same column. The parabose or parafermi systems transformaccording to irreducible representations of the symmetric group labelled by tableauwith no more than p rows or columns respectively. These correspond to having atmost p particles in antisymmetric or symmetric states. There are other forms ofparastatistics in which all representations of the symmetric group are admissible.States with the original Fermi statistics are represented by a tableau with a singlecolumn, the state is purely antisymmetric. Equivalently Boson states are repre-sented by tableau with a single row where the state is completely symmetric. Wesee now that the de�nitions of parabosons and parafermions are particular examplesof operators whose states transform according to more complex representations ofthe symmetric group. The term parastatistics is used to cover all systems in whichparticle states transform according to these generalised symmetry conditions.1.4.2 QuonsIn most experiments which look for a violation of the spin-statistics theorem theassumption is that the expected statistics will be violated by a small amount. Tocompare these experiments to a theory requires a model in which the statistics canvary with a small parameter q. Bounds on the size of q then give a quantitativemeasure of the accuracy of the spin-statistics theorem. To date the best theoreticalframework for such a violation of particle statistics is the quon.24



1.5. Experimental tests
The quon algebra is de�ned by taking the convex sum of the Bose and Fermialgebras. 1 + q2 [ak; ayl ]� + 1� q2 [ak; ayl ]+ = �kl (1.42)q is in the range �1 � q � 1. The usual vacuum conditionakj0i = 0 (1.43)is su�cient to calculate matrix elements of polynomials in the creation and anni-hilation operators. At q = 1 the statistics are bosonic while at q = �1 they arefermionic. Given the discrete representations of the symmetric group we shouldbe clear about the sense in which q interpolates between these statistics. Vectorsformed by polynomials in the creation operators acting on the vacuum are super-positions of vectors in di�erent irreducible representations of the symmetric group.As we vary q the weight given to vectors in these irreducible representations variessmoothly. For example as q ! 1 the weights of all representations tend to zero withthe exception of the symmetric representation leaving a completely symmetric state.The quon theory possesses many of the desired properties for a theory whichallows small violations of spin statistics. The norms are positive, cluster decom-position theorems and the PCT theorem hold and free �elds can have relativistickinematics. It is not however ideal as observables with space-like separations don'tcommute and as a consequence interacting relativistic �eld theory may not be pos-sible.

1.5 Experimental testsTo conclude this introduction to the spin-statistics theorem we will consider the cur-rent experimental evidence for the symmetrisation postulate. Gillaspy [28] provideda review of the literature from which most of our data will be taken.25



Chapter 1. Spin-Statistics (and all that)Currently there are no examples of particle behaviour which violate the sym-metrisation postulate. If in fact such data were to be seen, for example an inhibitedtransition in a collider experiment, it is unlikely it could be attributed to such aviolation. The frequency of such violations would be so low that the possibility ofan error in the experiment or detectors would prevent our gedanken investigatorpublishing. Instead experiments to test the symmetrisation postulate yield upperbounds on the probability �2 of �nding a two particle state with unusual statistics.In terms of the quon model of particle statistics�2 =8<: 1 + q for fermions1� q for bosons (1.44)The limits put on �2 by experiments vary widely. Gillaspy attributes this to thetrade-o� between the chance of the experiment observing a violation and the size ofthe violation that it is capable of detecting.Before discussing particular types of experiments we should mention some of thegeneral problems encountered when attempting to verify such a fundamental lawof physics. As elementary matter particles are fermions few experiments in to thesymmetrisation postulate are carried out on bosons. There are however approxi-mate results which suggest that the scale of a violation in the two classes shouldbe comparable. Using the indistinguishability of identical particles it can be shownthat it is not possible for a particle in an ordinary state to transfer to a state vi-olating the symmetrisation postulate. This important superselection rule preventsmany symmetry violating transitions. For example we might assume that if therewere a small violation of the symmetrisation postulate then electrons in a block ofmatter would slowly relax into the ground state, emitting photons in the process.This transfer is inhibited by the indistinguishability of electrons and so the absenceof such transitions does not provide a test of the symmetrisation postulate.We can now consider some of those schemes that have been used to providebounds on �2.Absorbing blocks: Fresh electrons which could be in a symmetry violating state26



1.5. Experimental testsare absorbed by the block. They are able to bind to an excited state of theatoms and might then decay to the ground state emitting a photon. The mostprecise experiment of this type was conducted by Ramberg and Shaw yielding�2 . 10�26.Decaying blocks: A nuclear reaction in the block ejects a fresh particle from theblock. Associated with the ejected particle is another that could have anoma-lous symmetry and decay to the ground state. The most precise data for anexperiment of this type provides a limit of �2 . 10�57.Collisions in vacuum: Individual particles are projected into atoms in a vacuum.The separate results can then be analysed. As there are few events the systemis less sensitive but hopefully more accurate. �2 . 10�13.Ground state accumulation: In a typical experiment mass spectroscopy is usedto search for atoms with an anomalous number of electrons in their groundstate. Whether the chemical behaviour of such an anomalous atom wouldremain unchanged remains an open question. A current limit on violationfrom this type of experiment is �2 . 10�27.The limits from these experiments depend to a great extent on the assumptions madein their analysis. Interestingly those experiments producing the lowest bounds arenot necessarily the most recent. These experiments and results are for small viola-tions of the symmetrisation postulate of the type we might expect from the quontheory. An alternative experimental consideration for the symmetrisation postulateare the statistics of the more exotic elementary particles. For these particles withshort lifetimes it is di�cult to �rst create and then make measurements on two par-ticle states. While for some particles like the pion the spin-statistics theorem hasbeen con�rmed there are many elementary particles for which successful experimentshave yet to be devised. 27



Chapter 1. Spin-Statistics (and all that)1.6 ConclusionsThe aim of this introduction to the spin-statistics theorem has been to summarisethe present understanding of spin-statistics. We have seen how the structure of theperiodic table and atomic spectra led to the discovery of Pauli's exclusion principleand the symmetrisation postulate. These core properties of nature are not a conse-quence of quantum mechanics, which does not specify the symmetry properties ofwavefunctions. The search for a theoretical explanation of these phenomena thencentred around relativistic quantum �eld theory where the most complete modernproofs show that integer spin particles with Fermi-Dirac statistics or half integerspin particles with Bose-Einstein statistics are not consistent with the basic axiomsof the �eld theory. These proofs are however negative proofs and we have seen thatparastatistics in which wavefunctions transform according to any irreducible rep-resentation of the permutation group are also consistent with quantum mechanicseven though they have not been observed by experiment. There also exists a localalgebra approach to quantum �eld theory in which the algebras of bounded opera-tors generated by observables in bounded regions of space-time are studied. In thistheory the various kinds of parastatistics appear under appropriate conditions, seeHaag [32].A proof of the spin-statistics theorem would be more satisfactory if it were to bederived from a clear physical principle which allowed a more intuitive understandingof the theorem. Unfortunately so far the suggestions for such an elementary proofhave been 
awed. Current experiments agree with the spin-statistics theorem tohigh precision but despite the best e�orts of many of the century's top physicistsan understanding of the spin-statistics connection has remained elusive. One of theearly proofs of the spin statistics theorem appeared in the PhD thesis of Dewey. Hebegan his physical review article on his work with the summary \The problem ofthe connection between the spin and the statistics of particles was �rst tackled byPauli. His work was not correct ...". The rest of this thesis will be an investigationof an elementary non-relativistic construction of spin-statistics. As such I hope thatit contributes to the understanding of the spin-statistics theorem. The explanation28



1.6. Conclusionsit provides will not be complete although I believe that will still leave me in goodcompany.
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Chapter 2
Representation Theory
This chapter summarises the results in the representation theory of the symmet-ric and unitary groups that are used subsequently. Anyone already familiar withthis material should skip this chapter, although the �nal section on the Littlewood-Richardson theorem is probably not widely known and will be used extensively later.I will present the representation theory of SU(n) and Sn in parallel, in order toemphasise the similarities between the two treatments that will lead to both beingclassi�ed by Young tableau. The examples are chosen to �t with the later chaptersand so may not appear as in a standard text.
2.1 PreliminariesAn isomorphism is a map between two sets which preserves the structure of thedomain of the map. In the sets with which we will be concerned this structure willin general be a multiplication law on the set. An automorphism is an isomorphismfrom a set back into itself so the domain and range of the map are the same.An algebra of order n over the complex numbers is de�ned by n3 complex num-bers 
ijk where 1 � i; j; k � n. Elements of the algebra are sets of n complexnumbers x = [x1; : : : ; xn]. Addition, multiplication and scalar multiplication are30



2.2. Groups and representationsde�ned according to the following rulesax+ by = [ax1 + by1; : : : axn + byn] (2.1)x:y = [X 
ij1xiyj; : : : ;X 
ijnxiyj] (2.2)a and b are complex numbers. An algebra is associative if x(yz) = (xy)z. All thealgebras we will meet are associative.
2.2 Groups and representationsA group, G, is a set of elements, g, closed under an associative multiplication law,containing an identity element and with each element having a unique inverse. Sowith I the identity element, g�1g = I. The order of the group G is the number ofelements in G and is denoted by 
G. If the multiplication law of a group is commu-tative as well as associative the group is called Abelian.A matrix representation of the group, T (G), is a map from G to a set of �nitedimensional complex matrices which preserves the multiplication law of the group,so that T (g1)T (g2) = T (g1g2) (2.3)The dimension of the representation is the dimension of the vector space acted onby the matrices. The trivial representation maps all elements of the group to unity(regarded as a one dimensional matrix).Given two representations of a group, T (G) and S(G), a third representationcan be formed by taking the direct sum of these two representations.T (g)� S(g) = 0@ T (g) 00 S(g) 1A (2.4)T and S form blocks on the diagonal of the new representation and the rest of theentries are zero. Any representation that can be brought into this block diagonalform by a change of basis is called a reducible representation, and conversely those31



Chapter 2. Representation Theoryrepresentations which can't be further decomposed into diagonal blocks are calledthe irreducible representations of the group. Starting with a reducible represen-tation we can look for a transformation which divides the representation into tworepresentations of lower dimension as in equation (2.4). The same process can thenbe repeated for the constituent representations. If they are reducible there exists atransformation which brings them into block diagonal form. As the matrix has �nitedimension the procedure must end with the representation expressed as a direct sumof a set of irreducible representations.An alternative intrinsic de�nition of irreducibility can be made by consideringthe space the representation acts on. We will take the representation to be n dimen-sional. Then if the exists a subspace of dimensionm where m < n which is invariantunder all transformations of the group the representation is reducible. If there isno invariant subspace the representation is irreducible. For a deeper discussion ofreducibility see [34] chapter 3.A second way to construct a new representation of a group is to use the matrixtensor product. This is the direct product representation.[(T 
 S)(g)]ix;jy = [T (g)]ij 
 [S(g)]xy (2.5)The matrix representation can be constructed by taking T (g) and replacing theterm Tij(g) with the matrix Tij(g)Sg . If the representations T and S are of n andm dimensions respectively the resulting matrices are of dimension n �m. Clearlythe multiplication law (2.3) is preserved for (T 
 S) so the tensor product de�nes arepresentation. The direct product representation is not in general irreducible evenwhen the representations used in the product are irreducible.A subgroup H of G is a subset of the elements of G obeying all the requirementsof a group. So, for example, all subgroups contain the identity. A representation ofG must also be a representation of H, as the multiplication law (2.3) holds for allg 2 H. In this way we can consider restricting a irreducible representation of G tothe elements of H. The representation of H de�ned in this way will in general be32



2.2. Groups and representationsreducible. It is the decomposition into irreducible representations of H of a restric-tion of a representation of G that is the central problem of this thesis.2.2.1 The symmetry group of an equilateral triangleFor our �rst example of a group we will consider the symmetries of an equilateraltriangle.
1

23Symmetry operations leave the triangle unchanged but permute the labels of thevertices. Re
ecting in the three symmetry axes exchanges pairs of vertices. Thediagram can also be rotated by 2�=3 clockwise or anti-clockwise which permutes allthree vertices. Leaving the diagram unchanged is the identity operation of this sym-metry group. The group of symmetry operations has six elements which naturallyfall into three classes, the identity, re
ections and rotations.2.2.2 Cosets and the quotient groupGiven a group G with a subgroup H we can de�ne sets of elements of G by takingan element g 2 G and multiplying all the elements of H by it. This set of elementsof G is called a left coset of G and is denoted gH. Right cosets can also be de�nedby multiplying by g on the right.For a �nite group G divides into distinct cosets of H. Take an element g notin H, none of the elements of gH are in H as otherwise gh1 = h2 so g = h�11 h2and is in H contrary to the assumption. All the elements of gH are also di�erentas gh1 = gh2 implies h1 = h2. We now have two distinct sets of 
H elements H33



Chapter 2. Representation Theoryand gH in G. If the group G has not been exhausted we can continue by selectingsome element g0 not in H or gH. In this way G breaks down into a �nite numberof distinct cosets each of 
H elementsG = H + gH + g0H + : : : (2.6)We see that the order of the subgroup 
H must divide the order of the group 
G.An invariant subgroup of G is a group H � G for whichgHg�1 = H (2.7)gHg�1 is the set of elements ghg�1 where h runs through the subgroup H. Foran invariant subgroup H we know that gH = Hg from which we can de�ne amultiplication law for the cosets(aH)(bH) = a(Hb)H = a(bH)H = ab(HH) = (ab)H (2.8)where we used the fact that H is a subgroup to deduce that HH = H. The inverse ofa coset aH is a�1H so the cosets of an invariant subgroup form a group themselves.This group is called the quotient group and is denoted by G=H.
2.3 Classes and charactersFor an element g 2 G the class of g is the set of elements g0 2 G that can be obtainedfrom g by conjugating with another element h 2 G, i.e.g0 = h�1gh (2.9)If an element g0 is conjugate to g and g00 is conjugate to g0 then g and g00 are alsoconjugate. For example if we have g0 = h�11 gh1 theng00 = h�12 h�11 gh1h2 = (h1h2)�1g(h1h2) (2.10)The elements of a group can be partitioned into these disjoint conjugacy classes.The number of elements in each class is the order of the class. The identity element34



2.3. Classes and charactersforms a separate class of order one for every group. It can be shown that the numberof irreducible representations of a group is equal to the number of classes of the group.Consider the example of the symmetries of the equilateral triangle. We will takeh to be a re
ection. For a re
ection we know that h�1 is h. If we take g to be aclockwise rotation by 2�=3 conjugating g by h we obtain g0 = h�1gh which is ananti-clockwise rotation by 2�=3. Both rotations are in the same conjugacy class. Infact we �nd that the three sets of symmetries, rotations, re
ections and the identityform the conjugacy classes of this group. We will see later that there are also threeirreducible representations of this symmetric group.The classes of a group are important when we consider a representation of thegroup. For two elements in the same classT (g0) = T (h)�1T (g)T (h) (2.11)Then taking the trace of both sides by summing the diagonal matrix elements we�nd that Tr T (g0) = Tr T (g) (2.12)The trace of a representation is a function of the classes of the group and is calledthe character of the representation,�T (g) = Tr T (g) (2.13)We have already seen that a representation can be decomposed in to a direct sumof irreducible representationsT (g) =M Tj(g) = 0BBBBBB@ T1(g) T2(g) . . . Tm(g)
1CCCCCCA (2.14)where Tj is an irreducible representation of G. Taking the trace of T we see that�T (g) =Xj �Tj (g) (2.15)35



Chapter 2. Representation TheoryAny character can be written as a sum of the characters of the irreducible represen-tations of the group.The irreducible characters have some important properties which will be usedsubsequently. A proof of these relations can be found in chapter 3 of [34] or anyother introduction to group theory. Firstly the irreducible characters are orthogonalif averaged over the group, 1
GXg �j(g)�k(g) = �jk (2.16)j and k label irreducible representations of G. �(g) is the complex conjugate of thecharacter. As the character is a function of the classes of G if we label the classesof G by � and take g� to be an element of � we can rewrite (2.16) as1
GX� 
� �j(g�)�k(g�) = �jk (2.17)where 
� is the order of the class �. If we consider the characterX of a representationT (g) = L Tj(g), where the Tj are the irreducible representations of G, then from(2.16) Nk the multiplicity of the irreducible representation Tk in the decompositionof T is Nk = 1
GXg X(g)�k(g) (2.18)The orthogonality of irreducible characters can be used to decompose a general rep-resentation into its irreducible components.The irreducible characters are also orthogonal when the characters of two classesare averaged over the irreducible representations.
�Xi �i(�)�i(�) = 
Xi �i(�)�i(�) = 0 (� 6= �) (2.19)If the irreducible characters are recorded in a character table the two orthogonalityrelations (2.17) and (2.19) refer to the orthogonality of the rows and columns of thetable respectively. 36



2.4. The symmetric group2.4 The symmetric groupThe set of n distinct symbols (�1; : : : ; �n) can be arranged in n! orderings. Apermutation � acts on the symbols by rearranging them into a new order,�(�1; : : : ; �n) = (��(1); : : : ; ��(n)) (2.20)There is an identity permutation leaving the symbols in their original positions andall permutations have an inverse which undoes the change in order. Applying twopermutations to the same set of symbols is equivalent to a single permutation ofthe symbols so the set of permutations is closed under multiplication and formsa group. This group of all possible permutations of the n symbols is called thesymmetric group Sn. Sn is of order n!. The symmetries of the equilateral trianglecorrespond to the symmetric group S3 where the symbols that are permuted in thiscase are the vertex labels.A cycle (ijk : : : l) is a permutation in which the i'th symbol is moved to the j'thplace the j'th to the k'th and so on. The l'th symbol replaces the i'th. The orderof the cycle is the number of terms in the cycle. Every permutation can be writtenas a product of disjoint cycles. For example the permutation(a; b; c; d ; e; f )! (d ; f ; a; c; e; b)is the result of applying the cycles (134)(26), cycles of order one are omitted by con-vention. A cycle of length m can be further factored into a product of (m� 1) twocycles. Consequently any permutation can be written as a product of these trans-positions. A permutation, �, is then referred to as even if it can be written as theproduct of an even number of transpositions and odd if the number of transpositionsrequired is odd. The product of two even or two odd permutations is even whilethe product of an even and an odd permutation is odd. The sign of a permutationsgn(�) is one for odd permutations and zero for even permutations.For the symmetric groups two permutations which, when written as a productof disjoint cycles, have the same number of cycles of the same order are in the same37



Chapter 2. Representation Theoryconjugacy class. We can see this cycle structure of classes by considering conjugatinga cycle � by �, as in (2.9). For example if � is the cycle (123) then�0 = �(123)��1 = (�(1)�(2)�(3)) (2.21)The cycle � is e�ectively applied to a reordered set of symbols so for the conjugateelement the length of the cycles is preserved. In S3 the symmetry group of theequilateral triangle the three re
ections written as cycles are (12), (13) and (23),the rotations are (123) and (132).
2.4.1 The irreducible representations of S3Continuing our example we will �nd the irreducible representations of S3. The trivialrepresentation, where all the elements are represented by 1, is an irreducible repre-sentation of S3. The alternating representation of the symmetric group is de�nedby associating 1 to the even permutations, in this case the identity and three cycles,and �1 to the odd permutations, the two cycles. We can see that the alternatingrepresentation obeys the same multiplication law as the group, a re
ection followedby a rotation is a re
ection, two re
ections is a rotation or the identity. This repre-sentation is one dimensional and so irreducible.There is also a two dimensional irreducible representation of S3. To �nd it we usethe de�ning representation of the permutation group. The de�ning representationof a permutation � in Sn is the matrix D(�) whereDij(�) = 8<: 1 if �(i) = j0 otherwise (2.22)38



2.4. The symmetric groupFor S3 the de�ning representation isD(I) = 0BBB@ 1 0 00 1 00 0 1 1CCCA D(12) = 0BBB@ 0 1 01 0 00 0 1 1CCCAD(13) = 0BBB@ 0 0 10 1 01 0 0 1CCCA D(23) = 0BBB@ 1 0 00 0 10 1 0 1CCCAD(123) = 0BBB@ 0 0 11 0 00 1 0 1CCCA D(132) = 0BBB@ 0 1 00 0 11 0 0 1CCCA
(2.23)

This representation is reducible, multiplying a vector (x; x; x) by any of these permu-tation matrices will leave the vector unchanged. It forms a one dimensional subspacewhich is invariant under the group transformations. The subspace transforms ac-cording to the trivial representation of S3. We can bring this representation intoblock diagonal form by changing the basis. One possible choice of transformation isP = 0BBB@ 1 1 11 �1 11 0 �2 1CCCAThen P�1DP decomposes into the trivial representation and the irreducible twodimensional representation, T .T (I) = 0@ 1 00 1 1A T (12) = 0@ �1 00 1 1AT (13) = 0@ 1=2 �3=2�1=2 �1=2 1A T (23) = 0@ 1=2 3=21=2 �1=2 1AT (123) = 0@ �1=2 �3=21=2 �1=2 1A T (132) = 0@ �1=2 3=2�1=2 �1=2 1A
(2.24)

39



Chapter 2. Representation TheoryWe will see later that the irreducible representations of Sn are in one-to-one corre-spondence with the partitions of n and so these three representations are the onlyirreducible representations of S3.
2.5 The group SU(n)A unitary matrix is a matrix whose inverse is its Hermitian conjugate. SU(n) isthe group of n � n unitary matrices with determinant one. The group SU(n) is aconnected, compact Lie group acting on vectors in C n . Elements of the group canbe parameterised by real numbers 
j whereg = exp(iXj 
j�j) (2.25)The �j are n�n hermitian traceless matrices and are called the generators of SU(n).There are n2 � 1 linearly independent traceless hermitian matrices so the group el-ements require n2 � 1 coe�cients 
j to parameterise the elements.The generators of the group are in�nitesimal group elements,exp(i��)! I + i��for small �. These in�nitesimal group generators form a vector space and so areoften easier to work with than the group elements themselves. If we look at theproduct of group elementsexp(i��b) exp(i��a) exp(�i��b) exp(�i��a) = I + �2[�a;�b] + : : :This product is also a group element and so can be written as exp(iP 
c�c). As�! 0 we must have [�a;�b] = i fabc�c (2.26)The constants fabc are the structure constants of the group. The structure constantsdetermine the multiplication law of the group. They obey the Jacobi identityfbcdfade + fabdfcde + fcadfbde = 0 (2.27)40



2.5. The group SU(n)The structure constants also determine a representation of the group, the adjointrepresentation, (�a)ij � �ifaij, see [27] chapter 2. The set of generators with com-mutation relations de�nes an algebra associated to the group, the Lie algebra su(n).2.5.1 SU(2)A simple example of the structure constants for three generators is fabc = "abc thecompletely antisymmetric tensor. The commutation relations are then the angularmomentum commutation relations. The de�ning representation of the Lie algebrais the n � n representation of the algebra which generates the group itself. Forthe angular momentum commutation relations traceless hermitian generators canbe de�ned from the Pauli matrices�x = 12 0@ 0 11 0 1A �y = 12 0@ 0 �ii 0 1A �z = 12 0@ 1 00 �1 1A (2.28)These generate the group SU(2).2.5.2 Roots and weights of Lie algebrasA representation of the group de�nes a representation of the algebra and vice versa.This correspondence is natural but to actually show that representations are con-nected in this way takes some work, a good discussion is found in chapter 4 of [40].We will turn now to discuss an irreducible representation T (SU(n)) associated witha representation T (su(n)) of the algebra.From the set of n2 � 1 generators we select a Cartan sub-algebra. This is amaximal set of n � 1 commuting generators, which we will label Hi. The spacethe representation T (su(n)) acts on will be spanned by eigenvectors of the Cartansub-algebra and the eigenvalues with respect to the Cartan sub-algebra will be usedto label these eigenvectors. Hi j�; T i = �i j�; T i (2.29)41



Chapter 2. Representation TheoryThe eigenvalues �i are the weights of a representation and the vector � with com-ponents �i is a weight vector. The order of the terms in � is arbitrary, the resultsapply equally to any ordering.The adjoint representation is the representation obtained by taking the genera-tors as the basis of the space the algebra acts on. A generator then acts on a basisvector by commutation �i j�ji = j[�i;�j ]i (2.30)The Cartan sub-algebra corresponds to a set of vectors with zero weightHi jHji = 0 (2.31)Diagonalising the space acted on by the generators gives a set of states jY�i whereHi jY�i = �ijY�i (2.32)The states correspond to generators Y� so that[Hi; Y�] = �iY� (2.33)The Y� are linear combinations of the generators not in the Cartan sub-algebra.These weight vectors � of the adjoint representation with components �i are theroots of the Lie algebra.Let us see how an operator Y� acts on a vector in a general representationT (su(n)). HiY� j�; T i = [Hi; Y�] j�; T i+ Y�Hi j�; T i= (�+�)i Y� j�; T i (2.34)We see that the vector Y�j�; T i is labelled by the weight vector � + �. We havenow identi�ed the root vectors with raising and lowering operators for the weightsof a Lie algebra. By choosing an initial state and repeatedly applying raising orlowering operators we �nd that �:��2 = �12(p� q) (2.35)42



2.5. The group SU(n)p and q are the number of times the operator Y� or Y�� can be applied to � beforereaching zero. Both p and q depend on the choice of weight � and root �. Equation(2.35) is derived in chapter 6 of [27], it is equivalent to the condition that angularmomentum eigenvalues be integer or half integer.
2.5.3 The highest weight classi�cation of irreducible representa-tionsTo provide a de�nition of a positive weight we �x the order of the generators in theCartan sub-algebra. This �xes the order of the components of the weight vector.We then de�ne a weight vector to be positive if its �rst non zero term is positive.With this de�nition we can order the weight vectors, �1 > �2 if �1 � �2 > 0. Thehighest weight vector of a representation is greater than other weight vectors and isnon-degenerate.To provide a nontrivial example we introduce generators of the de�ning repre-sentation of SU(4)S1i = 0@ �i 00 0 1A S2i = 0@ 0 00 �i 1AEx = 12p2 0@ 0 II 0 1A Ey = 12p2 0@ 0 �iIiI 0 1A

Ez = 12p2 0@ I 00 �I 1A
(2.36)

�i are the Pauli matrices de�ned in (2.28) and I is the 2 � 2 identity matrix. Toprovide all the 15 generators of SU(4) we must also include the commutators of thesematrices. We can select the Cartan sub-algebra to be the set of diagonal matricesEz, S1z and S2z in that order. A weight vector then consists of the eigenvalues43



Chapter 2. Representation Theory(ez; s1z; s2z). A basis for the space the representation acts on is
x1 =0BBBBBB@ 1000

1CCCCCCA x2 = 0BBBBBB@ 0100
1CCCCCCA x3 = 0BBBBBB@ 0010

1CCCCCCA x4 = 0BBBBBB@ 0001
1CCCCCCA (2.37)As the Cartan sub-algebra is diagonal these basis vectors are eigenvectors of thesub-algebra and can be labelled by their weights.�1 = � 12p2 ; 12 ; 0� �2 = � 12p2 ;�12 ; 0��3 = �� 12p2 ; 0; 12� �4 = �� 12p2 ; 0;�12� (2.38)Using the de�nition of a positive weight vector�1 > �2 > �3 > �4�1 is the highest weight vector of the de�ning representation of SU(4).By de�ning which weights are positive we are also provided with a classi�cationof raising and lowering operators depending on whether the associated root vector ispositive or negative. A simple root is a positive root which can not be written as thesum of two positive roots. A positive root which is not simple can be written as thesum of two positive roots and either these are simple or we can repeat the procedure.Using this scheme we see that any positive root can be written as a sum of simpleroots with positive integer coe�cients. From condition (2.35) it can be shown thatthe simple roots are linearly independent and span the space of weight vectors, [27]chapter 8. Therefore there are the same number of simple roots as generators in theCartan sub-algebra. Starting from the simple roots all other roots can be found bycombining the roots and checking the condition (2.35).By de�nition operating on the highest weight of a representation with a raisingoperator labelled by a positive root must give zero. As every positive root is a sumof simple roots it is su�cient to consider only the simple roots. We will label thesimple roots �j , j = 1 : : : m. Substituting p = 0 for a heighest weight into (2.35) we44



2.5. The group SU(n)have 2�j:�(�j)2 = qj (2.39)The qj's are non-negative integers. If a highest weight �k is the weight of a repre-sentation where qk = 1 and qj = 0 for j 6= k then �k is called a fundamental weight.Any highest weight can be written as a sum of these fundamental weight vectors� =Xk qk�k (2.40)Each highest weight labels an irreducible representation of SU(n). The represen-tations with highest weights �k are called the fundamental representations. It canbe shown that the irreducible representations of SU(n) can be constructed fromtensor products of the fundamental representations where the integers qk are themultiplicity of the fundamental representations in the product.The roots are the di�erences between the weights and the simple roots are theminimum positive di�erences. From the weights of the de�ning representation ofSU(4) (2.38) the simple roots of the group are�1 = �1 � �2 = �0; 1; 0��2 = �2 � �3 = � 1p2 ;�12 ;�12��3 = �3 � �4 = �0; 0; 1� (2.41)We can see that the roots �1 and �3 raise the S1z and S2z eigenvalues by onerespectively and so correspond to the operators S1+ and S2+, constructed from thegenerators in the usual way. The raising operator Y�2 is [E+; S2�]. With the simpleroots we can use (2.39) to �nd the fundamental weights.�1 = � 12p2 ; 12 ; 0��2 = � 1p2 ; 0; 0��3 = � 12p2 ; 0; 12� (2.42)The exact form of the simple roots and fundamental weights depends on the de�ni-tion of the generators and the choice of the Cartan sub-algebra. De�ning the simpleroots of SU(4) in this form will simplify the work later.45



Chapter 2. Representation Theory2.6 Representations of the symmetric group and Youngtableau2.6.1 Partitions, graphs and tableauWe turn now to �nding the irreducible representations of the symmetric group. Theconstruction uses tableau and it is these graphs of partitions which we will introduce�rst. Let � be a partition of an integer n into m integer parts, � = (�1; �2; : : : ; �m)where �1 + �2 + � � � + �m = j�j = n and the order of terms is immaterial. If thenumber of one's in � is a, the number of two's b etc then the partition can bewritten � = (1a; 2b; 3c; : : : ). We have already seen that the class of an element ofthe symmetric group is determined by the number of cycles of each order and sothe classes of Sn are labelled by partitions of n. As partitions don't depend on theorder of the �i we can adopt the convention that �1 � �2 � � � � � �m. Then toeach partition we associate a graph or tableau with �1 boxes in the �rst row, �2boxes in the second and so on, the rows being aligned on the left. So for examplethe partition (5; 3; 3; 2) of 13 is associated with the graph
We will keep to the convention that a graph refers only to an empty sequence ofboxes. When the boxes are labelled by symbols the �gure will be referred to as atableau. In some cases the symbols that distinguish the boxes may be suppressedwhen the �gure is drawn although in the text it will still be referred to as a tableau.We will see that not only are the classes of Sn labelled by graphs of n boxes but soare the irreducible representations of Sn.2.6.2 Characteristic units of the group algebraThe Frobenius algebra of the symmetric group is the algebra obtained by taking theelements of the group as the basis of the algebra. Then the multiplication law of thegroup determines a product of the basis elements. If �j is an element of the group46



2.6. Representations of the symmetric group and Young tableauan element � of the algebra can be written� =Xj �j�j (2.43)where the �j are complex coe�cients. The group algebra has many interesting prop-erties, see [40] chapter 4. We will state a few of relevance here without proof.The group algebra is isomorphic to a direct sum of matrix sub-algebras, subsetsof the elements of the algebra closed under multiplication. Each of these sub-algebrasde�nes a representation of the group as a group element can be expressed as a sumof elements of the sub-algebra. The number of matrix sub-algebras in the groupalgebra is equal to the number of classes of the group and the representations of Snde�ned by the sub-algebras are the irreducible representations. The group algebrais an algebra that contains all the irreducible representations of the group whenwritten as a sum of matrix sub-algebras. Each irreducible representation appearswith multiplicity equal to the dimension of the representation.There are particular elements of the group algebra that are associated withthe representations of the group. These characteristic units of the algebra are theidempotent elements � such that �2 = � . We can express � as a sum of elements ofthe irreducible matrix sub-algebras � =X �j (2.44)where j labels the sub-algebra. As �j is idempotent it can be transformed into adiagonal matrix (1ri ; 0l�ri). Multiplying a group element by this characteristic unitand taking the trace we obtain a compound character of the group.X =X rj�j (2.45)A primitive characteristic unit is the characteristic unit associated with the irre-ducible character �k, rk = 1 and rj = 0 for j 6= k. From the de�nition of theprimitive characteristic units we see that any characteristic unit can be written as asum of primitive characteristic units. Two primitive characteristic units of the samematrix sub-algebra are transforms of each other. Finally we state a lemma usedlater 47



Chapter 2. Representation TheoryLemma 2.6.1. The product of two primitive characteristic units is either zero,nilpotent, or a multiple of a primitive characteristic unit.If the two primitive characteristic units are in di�erent sub-algebras the productis zero. If they are in the same sub-algebra and the product is not zero then, as theprimitive characteristic units both have rank one, the product must also have rankone (the rank of the matrix is the number of linearly independent rows or columns).The reduced characteristic equation of the product is a quadratic with a zero root,x2� �x = 0. If � = 0 the product is nilpotent (x2 = 0), otherwise it is a multiple ofa primitive characteristic unit.We have seen that the irreducible characters of the group are associated withprimitive characteristic units which are linear combinations of the group elements.We will show that the characteristic units of Sn can be constructed by using tableauand that they are also used to construct irreducible representations of the specialunitary groups.
2.6.3 Characteristic units of Sn.The symmetrisation operator acting on r symbols is the sum of the group elementsof the symmetric group that permute the symbols. It is an element of the group al-gebra of a symmetric group acting on the symbols. The antisymmetrisation operatorsums the same group elements but with a minus sign attached to odd permutations.We take the graph of the partition � of n and assign to every box one of theintegers from 1 to n this is a Young tableau introduced by Young in [54]. The inte-gers are just one choice of a set of n symbols and so the order that the integers areassigned to boxes is not signi�cant.Let Pi be the symmetrisation operator for the �i symbols in the i'th row of thetableau. Then P is de�ned to be the product of the m row symmetrisation oper-ators. Multiplying Pi by a permutation in Pi produces the same symmetrisation48



2.6. Representations of the symmetric group and Young tableauoperator Pi. So Pi=�i! is an idempotent element of the group algebra. ConsequentlyP=�1! : : : �m! is also idempotent and therefore also a characteristic unit. Similarlywe de�ne N as the product of the antisymmetrisation operators of the symbols ineach column. N=�1! : : : �q! is also a characteristic unit of Sn, �i is the length of thei'th column of �.Neither of these characteristic units is primitive but if both are written as a sumof primitive characteristic units they have only a single primitive characteristic unitin common, see [40] chapter 5. The primitive unit in both N and P is associated withthe character ��. From lemma (2.6.1) the product of two primitive characteristicunits is zero, nilpotent or a multiple of a primitive characteristic unit. The productNP=�1! : : : �q!�1! : : : �m! contains the identity element of Sn. It can not therefore bezero or nilpotent and so is a multiple of the primitive characteristic unit ��. Thenormalised primitive characteristic unit is��(I)
Sn NP��(I) is the dimension of the irreducible representation �. We have associated theirreducible representations of Sn to the partitions � of n via the primitive charac-teristic units generated by a Young tableau of shape �.As primitive characteristic units are a central feature of the later chapters itis worth seeing an example for S3. An irreducible representation labelled by thepartition (2; 1) is associated with a tableau
3
1 2Any other labelling of the boxes is equally valid. We can now write down P and Nfor the tableau, P = I + (12) (2.46)N = I � (13) (2.47)�(21)(I)6 NP = 13(I + (12)� (13) � (123)) (2.48)49



Chapter 2. Representation TheoryIt can be veri�ed that this is an idempotent element of the group algebra. By con-struction it is associated with an irreducible representation labelled by the partition(2; 1).2.6.4 Constructing representations of SU(n) with characteristic unitsWe have seen that Young tableau of n boxes label the irreducible representations ofSn. The characteristic units they generate can also be used to construct irreduciblerepresentations of the special unitary groups. We will construct representations ofSU(n) from tensor products of the de�ning representation, this is the n dimensionalirreducible representation. The de�ning representation will have n weight vectorsfor its basis vectors �1 : : : �n ordered so that �1 > �2 > � � � > �n. The di�erencesbetween adjacent weights provide the simple roots of SU(n),�i = �i � �i+1 (2.49)The generators can be normalised so the weights all have the same length and theangle between weight vectors is the same for any pair. For the roots�i:�j = 8>>><>>>: 1 i = j�12 j = i+ 1 or i� 10 i 6= j or j � 1 (2.50)This can be veri�ed for the roots of the SU(4) de�ned in (2.42).The fundamental weights are given by a sum of the weights of the de�ningrepresentation, �j = jXk=1 �k = j �1 + j�1Xk=1 k�k (2.51)From the condition (2.39) they must obey the relation2�i:�j(�i)2 = �ij (2.52)and as the de�ning representation is a fundamental representation we can use theresults for multiplying roots (2.50) to check (2.51).50



2.6. Representations of the symmetric group and Young tableauIf we consider constructing a new representation by taking the tensor product ofq de�ning representations it is clear that the the highest weight vector would be thetensor product of q identical vectors all labelled by �1. The representation is notirreducible but it must contain the irreducible representation with highest weightq�1. If the tensor product is symmetrised then the tensor product of q �1's will stillhave the same highest weight vector although the dimension of the representationhas been reduced. The symmetrised tensor product is an irreducible representationof SU(n), as it is the representation of least dimension which has highest weightq�1. Symmetrising a tensor product of q terms is equivalent to acting on the tensorproduct with the primitive characteristic unit of Sq labelled by a tableau with asingle row.Rather than symmetrising we could consider antisymmetrising a tensor productof q de�ning representations. Permutations of a tensor product of basis vectors of thede�ning representation are added with the vectors resulting from odd permutationsacquiring a minus sign. This is also the action of a primitive characteristic unit ofSq labelled by a tableau of a single column. In this case it is clear that a tensorproduct of q identical basis vectors �1 will be zero as each odd permutation willcancel an even one. To be non zero the highest weight vector must be a product ofq di�erent basis vectors of the de�ning representation, the vectors �1; : : : ;�q. Thehighest weight vector will have weight� = Xi=1:::q �i; (2.53)which is the highest weight of the fundamental representation, �q, see equation(2.51).The fundamental representations of SU(n) are recorded using a Young tableaufor the characteristic unit of Sq used to construct the highest weight of the repre-sentation. 51



Chapter 2. Representation Theory
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Rather than �ll in the tableau with basis vectors �i just the labels i will be used todenote the vectors as in the example above.We have already noted that a general highest weight can be constructed from thefundamental weights, equation (2.40). We want to construct an arbitrary highestweight vector of an irreducible representation from the de�ning representation. Itshould have a highest weight � = Pi qi�i. This highest weight vector will berecorded in the tableau
n-1
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(2.54)There are n � 1 fundamental weights that the representation can be constructedfrom, and each is repeated qi times in the tableau so this has the correct weight.The tableau 2.54 is of a partition � where �k = Pn�1j=k qj . To construct therepresentation of SU(n) the primitive characteristic unit of the symmetric groupassociated with the tableau � is constructed. If there are q boxes in the tableau thisis a characteristic unit of Sq. The characteristic unit ��(I)NP=
Sq consists of a setof symmetry conditions which can then be applied to the tensor product of de�n-ing representations. The symbols 1 : : : q used to construct the characteristic unitcorrespond to the terms in the tensor product of the q basis vectors of the de�ningrepresentation of SU(n). A basis vector of the irreducible representation � of SU(n)is constructed by assigning basis vectors of the de�ning representation to boxes ofthe tableau. The product is symmetrised with respect to the terms in the same rowthen antisymmetrised with respect to those in the same column. The order of termsin the tensor product has not been speci�ed but neither has the labelling of the boxes52



2.7. Characters of U(n) and SU(n).in the tableau for the primitive characteristic unit so this ambiguity is not important.To see that (2.54) has the highest weight possible for the given shape of tableauwe can consider replacing one of the vectors �i with a vector with higher weight, �jwhere j < i. As each column contains all the �j with j < i antisymmetrising thecolumn gives zero, no state with higher weight can be constructed using that shapeof tableau.This procedure enables us to construct irreducible representations of SU(n) fromany Young tableau of up to n�1 rows. Representations with all the possible highestweights can be constructed this way so we can construct all the irreducible rep-resentations of SU(n). If we attempted to construct an irreducible representationof SU(n) using a tableau with more than n rows each column would need to be�lled with di�erent basis vectors of the de�ning representation. The de�ning rep-resentation has only n basis vectors so this is not possible and no representationscan be constructed this way. A tableau with n rows can be used to construct anirreducible representation of SU(n). Each of the columns of length n will containall n of the basis vectors of the de�ning representation. These terms will be presentin any vector of the representation and so this is the same representation as thatwhich is constructed using the tableau with the columns of length n removed. Theirreducible representations of SU(n) are labelled by and can be constructed fromYoung tableau with up to n � 1 rows. Columns of n boxes can be added to thetableau without changing the representation of SU(n).
2.7 Characters of U(n) and SU(n).If we return to thinking of the tableau as a partition then we label the irreduciblerepresentations of SU(n) with a string of integers f = (f1; : : : ; fn�1). jf j = f1 +f2 + � � � + fn�1 is the total number of boxes in the tableau. f is one of the possiblepartitions of jf j though not all partitions label irreducible representations of SU(n)as some partitions could be into more than n parts. The characters of U(n) and53



Chapter 2. Representation TheorySU(n) are functions of the classes of the groups and these functions will dependon the irreducible representation, labelled by f . To de�ne these functions we �rstparameterise the classes of the group. We will deal with U(n) and specialise theresults to SU(n) where necessary. A full account is found in [53] or [29].An element Q 2 U(n) is conjugate to a diagonal element where the diagonalterms have modulus one, see [53] chapter 7. SoU�1QU = 0BBBBBB@ �1 �2 . . . �n
1CCCCCCA (2.55)for some unitary matrix U and j�ij = 1 for all i. Let �i = ei�i then the n angles� parameterise the classes of U(n). We will use � to refer to the set of diagonalelements (�1; �2; : : : ; �n). The class is invariant under a permutation of the diagonalterms so � is unordered.As U(n) is a continuous group to sum a function of the classes over the groupwe associate a volume element to the parameters � corresponding to the proportionof the space of unitary matrices in the class. This is the uniform Haar measure onthe unitary group. Let � =Yi<k(�i � �k) (2.56)then the proportion of the group parameterised by angles lying between �i and�i + d�i is �� d�1 : : : d�n. A class function of the unitary group is a symmetricfunction of the angles and with this de�nition of a measure on the group we cande�ne the average of a function g(�).Theorem 2.7.1. The average of a class function g(�1; : : : ; �n) is1
 Z 2�0 � � � Z 2�0 g��d�1 : : : d�nwhere 
 = Z 2�0 � � � Z 2�0 �� d�1 : : : d�n54



2.7. Characters of U(n) and SU(n).The class functions that we will average over the group are the characters ofU(n) and its subgroups. The character is the trace of the matrix representationT (U(n)). As it is only a function of the class of the group elements not the elementsthemselves we only need evaluate it on the diagonal elements of the group f�g. Thesubgroup of diagonal elements is Abelian (the multiplication law is commutative),T (�1; : : : ; �n)T (�01; : : : ; �0n) = T (�1 + �01; : : : ; �n + �0n) (2.57)The representation decomposes into a sum of one dimensional representations Zk(�)where jZk(�)j = 1, as in chapter 7 of [53]. These representations obey the multipli-cation law (2.57). Solving for one dimensional functions of �Zk = �k11 : : : �knn (2.58)The characters of representations of U(n) are sums of monomials with integer coef-�cients.The characters are symmetric functions of the angles. They can however beassociated with antisymmetric functions ��, which appear naturally when averaginga product of characters over the group. The simplest antisymmetric functions arealternating sums of the monomials from which all the antisymmetric functions canbe constructed by taking linear combinations.�k(�1; : : : ; �n) =X� sgn(�) exp(k1�1 + � � �+ kn�n) (2.59)The sum is over all permutations � of the integers k. This alternating sum can bewritten as a Vandemonde determinant�k(�1; : : : ; �n) = ��������� �k11 �k12 : : : �k1n... ... ...�kn1 �kn2 : : : �knn ��������� (2.60)which we will abbreviate and write as j�k1 ; : : : ; �knj. The n rows are generated byreplacing k with each of the ki in turn. We observe that � itself is one of thesealternating sums, � = �(n�1;n�2;:::;1;0) = j�n�11 ; : : : ; �n�1n j (2.61)55



Chapter 2. Representation TheoryThe abbreviation j�n�11 ; : : : ; �n�1n j will always refer to the alternating sum �, ratherthan some general alternating sum with coe�cients n1 � 1; n2 � 1 etc. This is lesselegant than Weyl's notation but will be necessary to track the di�erent �i.Integrating two monomialsZ 2�0 � � � Z 2�0 Zk Zk0 d�1 : : : d�n = �k1k01 : : : �knk0n (2.62)From this we �nd the product of two of the antisymmetric functionsZ 2�0 � � � Z 2�0 �k �k0 d�1 : : : d�n = n! �k1k01 : : : �knk0n (2.63)which also gives us the volume of the unitary group, 
U(n) = n!.If we take a compound character X of the group and consider the antisymmetricfunction X� it is a sum of monomials and we can order the monomials in a similarway to that used to order weights. Zk > Zk0 if the �rst non-zero di�erence ki � k0iis positive. Ordering the terms of X� in this way we take the �rst term to becZk. As X� is antisymmetric it must also contain all the other terms in c �kand as any permutation of the k's is a monomial lower that cZk we know thatk1 > k2 > � � � > kn. We can subtract c �k from X� and repeat the procedureexpanding X� as a sum of the antisymmetric functionsX� = c �k + c0 �k0 + : : : (2.64)where �k > �k0 > : : : . Averaging XX over the group1
 Z 2�0 � � � Z 2�0 XX ��d�1 : : : d�n = c2 + c02 + : : : (2.65)However if X is the character of an irreducible representation then the average overthe group should be one, by character orthogonality. So c = �1 and the othercoe�cients c0 etc are zero. The irreducible characters of U(n) are of the form�(�) = j �k1 : : : �kn jj�n�11 : : : �n�1n j (2.66)where k1 > � � � > kn, this is the Weyl character formula for U(n). The highestmonomial in this character is �f11 �f22 : : : �fnn56



2.7. Characters of U(n) and SU(n).where f1 = k1 � (n� 1); f2 = k2 � (n� 2); : : : ; fn�1 = kn�1 � 1; fn = kn:and therefore f1 � � � � � fn.The irreducible representations of U(n) are labelled by a string of decreasingintegers (f1; : : : ; fn), in the same way that we deduced from the highest weights thatthe representations of SU(n) are labled by tableau with a string of n� 1 decreasingintegers. To use the Weyl character formula (2.66) to �nd the irreducible charactersof SU(n) we restrict the characters of U(n) to elements of the SU(n) subgroup. Todo this we set �n = �1�2 : : : �n�1 (2.67)Irreducible representations of U(n) restricted to SU(n) are also irreducible rep-resentations of SU(n). Let u 2 U(n) and d = Det u, (d=d2)1=nu 2 SU(n). IfT ((d=d2)1=nu) is an irreducible representation of SU(n) then d1=nT ((d=d2)1=nu) isan irreducible representation of U(n).If we look at the character formula for SU(n) with condition (2.67)
�f =

��������� �f1+(n�1)1 : : : �f1+(n�1)n�1 (�1�2 : : : �n�1)f1+(n�1)... ... ...�fn1 � � � �fnn�1 (�1�2 : : : �n�1)fn ��������������������� �
(n�1)1 � � � �(n�1)n�1 (�1�2 : : : �n�1)(n�1)... ... ...�1 : : : �n�1 (�1�2 : : : �n�1)1 : : : 1 1

������������
(2.68)

Multiplying the �rst column of the determinant in the numerator by ��fn1 and thelast by column by ��fn1 doesn't change the determinant. Repeating this for the other57



Chapter 2. Representation Theorycolumns
�f =

��������� �f1�fn+(n�1)1 : : : �f1�fn+(n�1)n�1 (�1�2 : : : �n�1)f1�fn+(n�1)... ... ...1 : : : 1 1 ��������������������� �
(n�1)1 � � � �(n�1)n�1 (�1�2 : : : �n�1)(n�1)... ... ...�1 : : : �n�1 (�1�2 : : : �n�1)1 : : : 1 1

������������
(2.69)

The character of (f1; : : : ; fn) is the same as (f1�fn; : : : ; fn�1�fn; 0). This is equiv-alent to the statement that irreducible representations of SU(n) labelled by tableauwith n rows are equivalent to the representation labelled by the tableau with thecolumns of length n removed. We have not established that the character labelledby (f1; : : : ; fn�1; 0) corresponds to the same representation of SU(n) that is con-structed from the tableau (f1; : : : ; fn�1) but this can be done see [53].
2.8 Characters of SnThere is a well known formula for the irreducible characters of the symmetric groupdue to Frobenius, a derivation of which is found in chapter 5 of [40]. The characterof an element depends on its class which we label with a partition ! of n, wherethe class is of all elements with !1 one cycles !2 two cycles etc. As we saw with thecharacteristic units of the symmetric group the irreducible representations of Sn arealso labelled by partitions of n, � = (�1 : : : �p). The irreducible characters appearin the formula as coe�cients in a polynomial of n variables xr(Yr<s(xr � xs)) Yj=1:::n(xj1 + � � �+ xjn)!j =X����x�1+p�11 x�2+p�22 : : : x�pp (2.70)If the left hand side is expanded once for each of the classes ! the characters of allthe irreducible representations appear as the coe�cients of certain monomials in theexpression. From this formula the characters of an irreducible representation of Sncan be computed. 58



2.9. The Littlewood-Richardson theorem2.9 The Littlewood-Richardson theoremThe Littlewood-Richardson theorem is a combinatorial rule for computing the co-e�cients in the decomposition of a product of primitive characteristic units of thesymmetric group. Let A�Sm be a primitive characteristic unit of Sm acting on msymbols constructed from a tableau [�] and A�Sn be a primitive characteristic unitacting on n di�erent symbols. We know that Sm � Sn is a subgroup of Sm+n. Theproduct of the two primitive characteristic units A�SmA�Sn will also be idempotentand so a characteristic unit of Sm+n. In general it will not correspond to an irre-ducible representation of Sm+n but will be a sum of primitive characteristic units ofSm+n A�SmA�Sn =X� Y ��� A�Sm+n (2.71)It is these coe�cients Y ��� that we want to compute.The Littlewood Richardson Theorem 2.9.1.To every tableau which can be constructed according to the following rule therecorresponds a primitive characteristic unit A�Sm+n in the decomposition of the prod-uct A�SmA�Sn , and this decomposition is complete.LR1: Take the tableau [�] intact and add to it the symbols in the�rst row of [�] to make a new tableau without changing theorder of the symbols. After the addition no two added sym-bols may be in the same column. Next add the remainingrows of [�] in succession according to the same rule.LR2: The only allowed additions are those where each symbol in[�] is placed in a later row than the symbol in the samecolumn from the preceding row of [�].These rules were originally proposed by Littlewood and Richardson in 1934 [41],however the subsequent proofs in [47] and [40] are not complete, the �rst correctproofs appeared in the 70's some forty years later. One version of the complete proof59



Chapter 2. Representation Theoryis given by Macdonald in [42].2.9.1 Multiplying Young tableauThe Littlewood-Richardson rules (LR) can be more simply stated as a procedure formultiplying two tableau one of shape � and the other �. Take the graph �, withoutloss of generality it can be assumed j�j � j�j, and �ll the boxes on the �rst row witha's, the second row with b's etc. So if � = (3; 1), � = (2; 1) we have
b
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1a aAdd the a's to � in any way which makes a new graph with a maximum of one a ineach column. In our example there are �ve possibilities
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Then repeat the procedure for each of the other rows in turn with the added conditionthat counting right to left and top to bottom the number of a's � the number ofb's � the number of c's � : : : . So in our example adding the single b in all possibleways to get a graph we �nd
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If we take the �rst of these tableau and count the number of a's and b's from theright we start with one b and no a's in the right-hand column. This doesn't agree60



2.9. The Littlewood-Richardson theoremwith the condition that the number of a's always be greater than or equal to thenumber of b's so we discard this tableau. Checking the other tableau similarly andcounting top to bottom as well we �nish with a set of nine tableau.
b

1

2

1

1

2

1

1

2 1

1 2

1

1

2

1

1

2 1

1 2

1

1 2

1

1

2

1

a
a

b

a
a
b

a
ba

a
ba

aa
b

a

a

b

a aaa
b

a
b

aWithin this set of tableau the graph (4; 2; 1) is repeated twice with di�erent ar-rangements of the letters. In terms of characteristic units we have two primitivecharacteristic units of Sm+n which both correspond to the same irreducible repre-sentation, two equivalent primitive characteristic units. The number of graphs � inthe product of the two tableau is the coe�cient Y ���, so in our exampleY (4;2;1)(3;1)(2;1) = 22.9.2 Applying the Littlewood-Richardson theorem to representa-tionsAs the primitive characteristic units project onto irreducible representations of thesymmetric groups the Littlewood-Richardson theorem is also a theorem about thedecomposition of a representation of Sm+n into irreducible representations of theSm � Sn subgroup.Consider any groupG of order 
G with a subgroupH of order 
H . An irreduciblerepresentation of G restricts to a representation of H. If the irreducible charactersof G are Xi and the irreducible characters of H are �j then for h 2 HXi(h) =Xj cij�j(h) (2.72)cij is the multiplicity of the representation j of H when the representation i of G isrestricted to H. 61



Chapter 2. Representation TheoryThe character of a group is a function of the classes of the group. Let � be aclass of G of order 
�G, 
�H of these elements are in H. Elements in di�erent classesof G must be in di�erent classes of H but a class of G can break up into severalclasses of H. We label the classes of H which are in the class � of G with �1; : : : ; �r.Using the character orthogonality relation (2.18) we can �nd the coe�cients cikcik = 1
H X�j 
�jH Xi(�)�k(�j) (2.73)The sum is over all classes of H. With a formula for the coe�cients cik we caninvestigate the composite character of G that they de�ne.Xi cikXi(�) = 1
H X�j 
�jH �k(�j) Xi Xi(�)X i(�)= 1
H X�j 
�jH
�G �k(�j)
G (2.74)where we applied the orthogonality relation (2.19). This can be rearranged into asecond formula relating the characters of a group and its subgroup, so we haveXi(h) = Xj cij�j(h)Xi cijXi(�) = X�k 
G
�kH
H
�G �j(�k) (2.75)The multiplicity of the representation j of H when the representation i of G is re-stricted to H is the same as the multiplicity of the representation i of G when therepresentation j of H is used to induce a representation of G.Returning to characteristic units of the symmetric group, the Littlewood-Richardsontheorem gives a procedure for calculating the coe�cients of the primitive charactersof Sm+n from a primitive character of the subgroup Sm � Sn, (2.71). These are thecoe�cients of the induced representation in (2.75) so the same coe�cients from theLittlewood-Richardson theorem also give the decomposition of a representation ofSm+n into irreducible representations of Sm � Sn.62



2.9. The Littlewood-Richardson theorem2.9.3 Decomposing representations of SU(m + n) into representa-tions of SU(m)� SU(n)In section 2.6.4 we discussed how characteristic units of Sn are used to constructirreducible representations of SU(n). In [33] and [37] the Littlewood-Richardson the-orem for multiplying tableau is used to decompose a representation of SU(m + n)into irreducible representations of its SU(m)� SU(n) subgroup. We know that themultiplicity of an irreducible representation Tj(SU(m)�SU(n)) when an irreduciblerepresentation Ri(SU(m+n)) is restricted to SU(m)�SU(n) is equal to the numberof representations Tj induced by a representation Ri of the subgroup.A representation of SU(m)�SU(n) is constructed from two characteristic units,one of Sq and another of Sp. The characteristic unit of Sq (respectively Sp) act onthe tensor product of q (p) basis vectors of the de�ning representations of SU(m)(respectively SU(n)). The product of the two primitive characteristic units is a char-acteristic unit of Sq+p and induces a representation of SU(m+ n). The Littlewood-Richardson theorem gives the number of primitive characteristic units of Sq+p in thedecomposition of the product of the primitive characteristic units of Sq and Sp. Eachprimitive characteristic unit generates an irreducible representations of SU(m+ n).The number of irreducible representations of SU(m + n) induced by the represen-tation of SU(m) � SU(n) is the same as the multiplicity of the representation ofSU(m)� SU(n) in the decomposition of the chosen representation of SU(m+ n).Itzykson and Nauenberg [37] point out that this simple situation is complicatedslightly by the use of multiple graphs to label a single representation of SU(n). Allthe irreducible representations of SU(m)�SU(n) are labelled by two graphs ofm�1and n� 1 rows respectively but without changing the representation we can add �columns of m boxes to the �rst graph and � columns of n boxes to the second. Forexample the representation (2; 1)(2) corresponds to the graphs
...

...

β

...
...m

n

α

63



Chapter 2. Representation TheoryApplying the Littlewood-Richardson theorem we multiply the two tableau producingtableau which label irreducible representations of SU(m+n). Counting the numberof tableau of a particular shape gives the multiplicity of the irreducible representa-tions of SU(m) � SU(n) in the decomposition of the representation of SU(n +m)labelled by a tableau of that shape. Tableau with columns of m + n boxes can bediscarded as the results for these representations of SU(m+ n) can be obtained byconsidering the tableau with the columns of length m+ n removed.Let us look at a simple example. We will �nd the multiplicity of the repre-sentation (2; 1)(2) of SU(3) � SU(2) when the representation (4; 2; 1) of SU(5) isrestricted to the SU(3)�SU(2) subgroup. The representation (4; 2; 1) is labelled bya tableau of seven boxes. For this to be a result of the multiplication of two tableauthe two tableau must have a total of seven boxes between them. To the tableau(2; 1) we can add � columns of three boxes without changing the representation andwe can add � columns of two boxes to (2). For the two tableau to consist of sevenboxes in total we must take � = 0 and � = 1. We want to �nd the product of thetableau
This is the tableau multiplication done in section 2.9.1. The graph
appears twice in the result so the representation (4; 2; 1) of SU(5) when restricted tothe SU(3) � SU(2) subgroup contains two copies of the (2; 1)(2) irreducible repre-sentation of the subgroup. It is this procedure that will be extended in chapter 4 toprovide a tableau method achieving a similar decomposition for a subgroup of SU(4).We have now reviewed the representations and characters of the symmetric andunitary groups and discussed the relationship between them. We have also dis-cussed results relating to the decomposition of a representation of a group restrictedto a subgroup culminating in the Littlewood-Richardson theorem which provides a64



2.9. The Littlewood-Richardson theoremmethod of evaluating the multiplicity of representations both of subgroups of thesymmetric and the unitary groups. This should provide the necessary tools for thesubsequent investigation.
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Chapter 3
Quantum indistinguishability
Berry and Robbins (BR) in a series of papers [8], [9] and [10] have proposed analternative formulation of non-relativistic quantum mechanics in which the spin-statistics theorem is derived from the properties of a position-dependent spin basisof the wavefunctions. In this chapter we will review this construction in order todemonstrate the underlying group-theoretical properties. The particular use of theSchwinger operators in [8] can then be seen as a choice of a certain set of represen-tations of the groups. The subsequent chapters will involve deriving the propertiesof this construction for general representations.I will not present the entire scope of their work here. In particular the dis-cussions of the relationship between the construction, relativity and the invarianceof the system under Lorentz or Galilean transformations has been omitted alongwith the extension to particles with additional quantum properties such as colour,strangeness or isospin (These are discussed in [9]).
3.1 IntroductionThe construction of Berry and Robbins suggests an elementary non-relativistic basisfor the spin-statistics theorem. As quantum mechanics alone is insu�cient to derivea spin-statistics connection it is necessary to include additional physical postulates.To be accepted as an explanation of spin-statistics these additional requirements66



3.2. The position-dependent spin basisshould be more transparent than the symmetrisation postulate itself. Berry andRobbins suggest that the spin-statistics connection could be a consequence of twoadditions to normal quantum mechanics, the correct incorporation of the indistin-guishability of identical particles (so that the space of wavefunctions has built intoit the indistinguishability of states related by the exchange of particles positions andspins) and the singlevaluedness of wavefunctions on this space.The construction is reminiscent one of the classical belt tricks that Feynmanfound indicative of the spin-statistics connection, see �gure 1.2. In this modelfermions are seen as tethered objects where exchange introduces a twist in the ribbonconnecting them whilst bosons correspond to the ordinary untethered objects. Wewill see that the construction avoids the objection that elementary particles haveno ribbon-like topological marker as the spin basis itself records the exchange offermions without a classical ribbon.
3.2 The position-dependent spin basisThe wavefunction of a system of n particles with spin s would normally be expandedon a spin basis jMi where the basis vectors are labelled by the z-components of then spins, M � fm1;m2; : : : ;mng.j	(R)i =X M (R)jMi (3.1)where R � fr1; r2; : : : ; rng is a point in the con�guration space of the n particles,the space R3n with coincident points removed so no two particles can occupy thesame position. In this description the identical particles are still identi�ed by theirlabels so, for example, if we exchange particles 1 and 2 this is a di�erent point in thecon�guration space. In order to make the particles truly indistinguishable permutedcon�gurations of particles will be identi�ed and we will insist that the wavefunctionbe singlevalued on this new con�guration space. So if � is an element of Snj	(R)i = j	(�R)i (3.2)67



Chapter 3. Quantum indistinguishabilityThe permuted con�guration is �R = fr�(1); : : : r�(n)g. To exchange the particles,rather than just the position labels, we must exchange the spins of the particleswhen we exchange the positions. In BR this is done using a position-dependentunitary transformation U(R) to generate a position-dependent spin basis,jM(R)i = U(R)jMi (3.3)This position-dependent spin basis jM(R)i is required to have certain properties.3.2.1 The basis depends smoothly on R.3.2.2 There is a single state for all permutations of particles (this excludes paras-tatistics), j�M(�R)i = ei��(R)jM(R)i (3.4)� is a permutation of the n particles with their spins,�(M) = fm�(1); : : : ;m�(n)g3.2.3 Spins are parallel-transported.hM0(R)jrM(R)i = 0 (3.5)M0 and M are arbitrary sets of spin quantum numbers. This requirementensures that their are no local changes in phase associated with travellingaround a contractible closed loop.By combining the second and third conditions we can show that the position-dependent spin basis must transform according to the trivial or alternating repre-sentation of the permutation group. First we will take � to be an exchange of twoof the particles keeping the rest �xed. Applying the condition (3.4) twice we �ndthat jM(R)i = j�2M(�2R)i = ei��(�R)j�M(�R)i= ei(��(�R)+��(R))jM(R)i (3.6)The general solution of this is ��(R) = k� + ��(R) (3.7)68



3.2. The position-dependent spin basiswhere k is an integer and ��(�R) = ���(R)Using (3.4) and the result (3.7) we can writeh�M0(�R)jr�M(�R)i = hM0(R)jrM(R)i + i(r��(R)) hM0(R)jM(R)i= hM0(R)jrM(R)i + i(r��(R)) �MM0 (3.8)Applying the parallel-transport condition we have(r��(R)) �MM0 = 0 (3.9)To satisfy (3.9) for all R, M and M0 requires ��(R) to be a constant. As ��(R)changes sign under odd permutations it must be identically zero. We have the resultj�M(�R)i = (�1)kjM(R)i (3.10)In deriving (3.10) we assumed that the permutation � was an exchange of twoparticles. However as all permutations can be constructed from a product of two-cycles this can be rewritten for a general permutation �j�M(�R)i = (�1)k sgn(�)jM(R)i (3.11)If k is even the states of the position-dependent spin basis transform according tothe trivial representation of the permutation group. If k is odd the states transformaccording to the alternating representation.In [8] BR provide a construction of U(R) for which they show thatk = 2s (3.12)The construction for n particles depends on the solution of a topological problem Iwill describe later. In the two particle case the solution of this problem is simple andthe construction can be easily explained. Before looking at the explicit constructionof U(R) we will see how taking k = 2s leads to the spin-statistics connection.69



Chapter 3. Quantum indistinguishability3.3 Quantum mechanics in the position-dependent spinbasisFirst we assert the condition that wavefunctions on the position-dependent basis aresinglevalued. j	(�R)i = j	(R)i (3.13)From (3.11) and (3.12) we know thatj	(�R)i = XM  M(�R)(�1)2s sgn(�)j��1M(R)i= XM  �M(�R)(�1)2s sgn(�)jM(R)i (3.14)So for the components of the wavefunction we have �M(�R) = (�1)2s sgn(�) M(R) (3.15)This has the form of the spin-statistics relation and to demonstrate that it is equiv-alent we show that these coe�cients obeys the same Schr�odinger equation as thecoe�cients in the usual spin basis.An operator A in the position dependent spin basis isA(R) = U(R)AU y(R) (3.16)In this way the operators in the �xed- and position-dependent spin bases obey thesame commutation relations. If we compare the action of A in the two baseshM(R)jA(R)j	(R)i = XM0 hMjU y(R)U(R)AU y(R) M0(R)U(R)jM0i= XM0 hMjA M0(R)jM0i= hMjAj	i (3.17)which is the same as the equation for the action of the operator A in the �xed-spinbasis. By de�ning the operators on the position-dependent spin basis in this way allthe usual properties of non-relativistic quantum mechanics remain unchanged. So70



3.4. The Schwinger representation of spinfor a choice of U(R) with the required properties and where k = 2s the wavefunc-tions are required to obey the spin-statistics theorem while all the usual propertiesof quantum mechanics are maintained.
3.4 The Schwinger representation of spinIn the Schwinger representation of spin a pair of harmonic oscillators with creationand annihilation operators ay, a and by, b are assigned to each spinning particle.The spin operators are de�ned using the Pauli matricesS = 12 � ay by ��0@ ab 1A (3.18)S is a vector of spin operators de�ned by the vector of Pauli matrices �. In theSchwinger representation states are labelled by the number of quanta in each har-monic oscillator. From (3.18) Sz = 12(aya� byb)As aya is the number operator for the \a" oscillator the z-component of spin for astate is m = 12(na � nb)where na is the number of quanta in oscillator a. Similarly the total spin of theparticle is s = 12(na + nb)We can think of the state as being represented by 2s quanta split between thetwo oscillators. The spin raising and lowering operators move a quantum from oneoscillator to the other, changing the z-component of spin by one whilst keeping thetotal spin the same. For example with three quanta, spin 3=2, a state withmz = 1=2is described schematically by the following diagram.
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b 71



Chapter 3. Quantum indistinguishabilityTo construct spin states for the n spins we use n pairs of oscillators,a1; b1; : : : ; an; bnIn order for the operator U(R) to exchange spins, BR de�ne an exchange algebra ofoperators Eij which move quanta between the pairs of spin oscillators.Eija = 12 � ayi ayj ��0@ aiaj 1A (3.19)Given a pair of oscillators ai; aj this de�nes a vector of three exchange operatorsEija as in the case of the spin operators. A second set of operators Eijb is de�nedsimilarly then Eij = Eija +Eijb (3.20)De�ning the exchange algebra in this way an operator Eij+ moves a quanta fromoscillator aj to ai and one from bj to bi. We can see that including these operationsthe total spin of the individual particles is no longer �xed but the total number ofquanta in the whole system of oscillators is still constant. Schematically a generalspin state can be represented as a distribution of 2sn quanta between the oscillators.
a

...

1 2 n

bThe eigenvalue of such a state with respect to the operator Eijz is eij .eij = 12(nai + nbi � naj � nbj )= si � sj (3.21)States can be labelled by the eigenvalues of the z components of the exchange algebraeij and the z components of the spins mj instead of the occupation numbers nai; nbiof the oscillators. j�i = je12; e13; : : : ; en�1n;m1; : : : ;mni (3.22)72



3.5. U(R) for two particlesFor states j�i where the spins of all the particles are equal, the eigenvalues eij of theexchange algebra are all zero, see equation (3.21), and we can return to our originallabel of the state jMi.
3.5 U(R) for two particlesIn [8] BR construct a unitary operator U(R) for two particles using the Schwingerrepresentation. For two particles the position-dependent basis is a function of therelative position of the particles, r = r1�r2. Then exchanging the particles changesr to �r. The spin basis is jMi = jm1;m2i where the state with the spins exchangedis denoted jMi = jm2;m1i. The position-dependent spin basis is generated by U(r)so jM(r)i = U(r)jMi (3.23)From equation (3.11) the exchange requirement for two particles isjM(�r)i = (�1)kjM(r)i (3.24)where (�1)k is the exchange sign for the position-dependent basis generated by U(r).Using the Schwinger representation of the spin basis we can write the exchangedstate jMi in terms of spin state jMi. To achieve this we de�ne an operator generatedby the element E12y of the exchange algebra,Y = exp(�i�E12y ) (3.25)A state j�i of the Schwinger representation is formed by applying creation operatorsto the ground state. A state with na1 quanta in the oscillator a1 etc is writtenj�i = (ay1)na1 (ay2)na2 (by1)nb1 (by2)nb2 j0i (3.26)We can split the operator Y into operators Ya and Yb operating on the a and boscillators respectively. Ya and Yb commute and the operator Y is the product YaYb.Ya = exp(�i�E12ay) (3.27)73



Chapter 3. Quantum indistinguishabilityThe operator Ya induces a transformation on the vector of creation operators� a0y1 a0y2 � = Ya � ay1 ay2 �Y ya= � ay1 ay2 � exp(�i�2�y)= � ay1 ay2 �0@ 0 �11 0 1A= � ay2 �ay1 � (3.28)Yb induces a similar transformation in the operators by1 and by2. Using these resultswe can write the action of Y on the state j�iY j�i = (�1)na2+nb2 (ay1)na2 (ay2)na1 (by1)nb2 (by2)nb1 j0i (3.29)For a state jMi where s1 = s2 = s we �nd thatY jMi = (�1)2sjMi (3.30)We can use this exchanged state to investigate properties of the position-dependentbasis.We will assume that U(r) is generated by the algebra of exchange operators sothat U(r) = exp(�ic(r):E) (3.31)Starting from the exchange requirement (3.24) we know thatU(�r)jM i = (�1)kU(r)jMi (3.32)Using the operator Y to rewrite jM i from equation (3.30) we haveU(�r)Y jMi = (�1)k�2sU(r)jMiU y(r)U(�r)Y jMi = (�1)k�2sjMi (3.33)We can now de�ne a new operator V (r) whereV (r) � U y(r)U(�r)Y (3.34)74



3.5. U(R) for two particlesV (r) is also generated by the exchange algebra andV (r)jMi = (�1)k�2sjMi for all jMi (3.35)This implies that V (r) is diagonal in the jMi basis. An operatorexp(�id(r)E12z )generated by E12z is diagonal in any basis and next we will show that V (r) is suchan operator.In the jMi basis V (r) must commute with any operator generated by E12z .V (r) exp(�id(r)E12z )V y(r) = exp(�id(r)E12z ) (3.36)This is equivalent toexp(�id(r) fV (r)E12z V y(r)g) = exp(�id(r)E12z ) (3.37)which implies that V (r)E12z V y(r) = E12z (3.38)in the jMi basis. To any element generated by the exchange algebraexp(�ic(r):E12)we can associate a rotation matrix Rĉ(jcj), a rotation about the axis ĉ by an anglejcj. Then using the rotation matrix RV associated to V (r) from (3.38) we haveRV ẑ = ẑ (3.39)The ẑ direction is invariant under the spatial rotation associated to V (r) and con-sequently it must correspond to a rotation about the ẑ axis.V (r) = exp(�id(r)Ez) (3.40)75



Chapter 3. Quantum indistinguishability3.5.1 The exchange sign is independent of U(r)Using these results for V (r) we can see that the exchange sign (�1)k is independentof the particular form of U(r). From equation (3.21) we know that the spin vectorsare null states of E12z . E12z jMi = 0 (3.41)As V (r) is generated by E12z this impliesV (r)jMi = jMi (3.42)Comparing this to equation (3.35) we see thatk = 2s (3.43)The exchange sign (�1)k is that required to produce the correct spin-statistics con-nection for any operator U(r) with the required properties. The exchange sign istopological.3.5.2 Constructing U(r)These results also suggest how to construct the operator U(r). We saw previouslythat any operator generated by E12z does not e�ect the spin states jMi.exp(i�(r)E12z )jMi = jMi (3.44)If we de�ne a new unitary operator U 0(r) whereU 0(r) = U(r) exp(i�(r)E12z ) (3.45)then jM(r)i = U(r)jMi = U 0(r)jMi (3.46)The same position-dependent basis is generated by both U and U 0.76



3.5. U(R) for two particlesTo determine U(r) it is su�cient to determine the action of the associated spatialrotation RU (r) on the ẑ axis. From the de�nition (3.34) of V (r) we have(RU (r))�1RU (�r)Rŷ(�)ẑ = ẑ (3.47)where Rŷ(�) is a rotation by � about the ŷ axis, the rotation associated to theoperator Y . This condition on the rotations reduces tooRU (r)ẑ = �RU (�r)ẑ (3.48)To simplify this further we can de�ne ê(r) = RU (r)ẑ thenê(�r) = �ê(r) (3.49)or ê(r) is odd. A simple solution with this property is to take ê = r̂ soRU (r)ẑ = r̂ (3.50)So one example of the operator U(r) which generates the position-dependent spinbasis is U(r) = exp(�i�n̂:E12) (3.51)where Rn̂(�)ẑ = r̂.3.5.3 Smoothness of jM(r)iThe choice of U(r) in (3.51) is smooth everywhere except for the south pole. There-fore the position dependent basis jM(r)i must also be smooth except possibly at thesouth pole. We can choose a second operator U 0(r) related to U(r) by a rotationabout the ẑ axis as in equation (3.45). U 0(r) will be an alternative exchange rotation�rst from ẑ to �ẑ then from �ẑ to rU 0(r) = exp(�i(� � �)n̂:E12) exp(�i�E12y ) (3.52)U 0(r) is clearly smooth near the south pole so the position-dependent basis jM(r)iis also smooth there. As both U(r) and U 0(r) generate the same position-dependentspin basis, the basis is smooth everywhere.77



Chapter 3. Quantum indistinguishability3.5.4 Parallel-transport of jM(r)iThe parallel-transport condition (3.5) ishM 0(r)jrM(r)i = hM 0jU y(r)rU(r)jMi = 0 (3.53)U(r) and U(r+dr) are in�nitesimally di�erent exchange rotations and so di�er onlyby a linear combination of the elements of the exchange algebra.U y(r)rU(r) = �(r)E12z + �(r)E12+ + 
(r)E12� (3.54)Therefore hM 0(r)jrM(r)i =�(r)hM 0jE12z jMi+ �(r)hM 0jE12+ jMi+ 
(r)hM 0jE12� jMi (3.55)The physical spin states jMi of the Schwinger representation are null states of E12z ,E12z jMi = 0 (3.56)So the \�" term in (3.55) vanishes. As E12+ and E12� operators raise or lower thetotal spin of one of the particles the \�" and \
" terms are inner products of a spinstate (s; s) with a state (s � 1=2; s � 1=2). These also vanish which demonstratesthat the position-dependent basis parallel-transports spins.
3.6 The Schwinger representation of SU(2n)We will see that the Schwinger representation of n spins is equivalent to the com-pletely symmetric representation of SU(2n). The algebra of exchange operatorsgenerates the subgroup SU(n) while the n sets of spin operators generate the group[SU(2)]n.We begin by de�ning a set of matrices related to the spin operators of theSchwinger representation. The spin operators Sj correspond to a vector of 2n� 2nmatrices Sj which are block diagonal with the Pauli matrices � in the j'th 2 � 278



3.6. The Schwinger representation of SU(2n)block. The other terms in the matrix are zero.
Sj = 12

0BBBBBBBBBBBBBBBB@
0 . . . 0 � 0 . . . 0

1CCCCCCCCCCCCCCCCA (3.57)
We can see immediately that these matrices have the commutation relations requiredfor the spin operators of the n particles. All the spin matrices commute with those ofa di�erent spin while the three matrices of a single spin have the angular momentumcommutation relations. These spin matrices generate the group [SU(2)]n, n sets ofcommuting matrices each generating the angular momentum group SU(2).As there exists a simple matrix analogue for spin operators in the Schwingerrepresentation of spin we can expect such an analogy to continue for the exchangealgebra. The operators Eij in the Schwinger scheme are related to a vector of n�nmatrices E ij . The nonzero terms in these matrices are where the i'th and j'thcolumns intersect the i'th and j'th rows.

E ij = 12
0BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 . . . 0 �11 �120 . . . 0�21 �22 0 . . . 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA
(3.58)

These matrices form a matrix algebra with the same commutation relations as theexchange operators in the Schwinger representation. We can see that the matrices79



Chapter 3. Quantum indistinguishabilityspan the space of Hermitian n� n matrices and so the exchange algebra is the Liealgebra su(n). The matrices de�ned in (3.58) generate the group of n � n unitarymatrices with determinant one, SU(n). So if we take u to beu = exp(Xij cij :E ij) (3.59)then u is in SU(n). In order to de�ne matrices related to the exchange algebrawhich have the same commutation relations with the matrices S lm as the operatorsin the Schwinger representation we take the tensor product of E ijk with the 2 � 2identity matrix I. The elements u generated by the exchange algebra now permutethe 2� 2 blocks in [SU(2)]n.By including the commutators of E ij 
 I and S l we generate a set of 2n � 2nmatrices which span the space of Hermitian 2n�2n matrices. These matrices de�nethe Lie algebra su(2n) and generate the group SU(2n). We see that the algebrade�ned by the Schwinger operators is therefore also su(2n) and the states j�i arevectors in a representation of SU(2n). The existence of unphysical states where theparticles have di�erent spins is a necessary consequence of using the larger algebraof operators which generate the permutations of the spins.The Schwinger representation of the spins is isomorphic to the symmetrisedtensor product of 2ns copies of the 2n� 2n de�ning representation of SU(2n), thegenerators of which are the matrices we have just de�ned. To con�rm this we cancheck the highest weight of the Schwinger representation. States in a representationof SU(2n) can be labelled using the eigenvalues of a maximal set of commutingmatrices, the Cartan sub-algebra. To construct the Cartan sub-algebra we willselect the diagonal generators E ijz and S lz. As with the Schwinger schemej�i = je12; e13; : : : ; en�1n;m1; : : : ;mni (3.60)To de�ne a highest weight we �x the order the eigenvalues in the de�nition of � andsay that a weight vector of eigenvalues � is positive if the �rst non zero eigenvalue ispositive. The highest weight state is then the state j�i for which e12 is a maximumfollowed by the other eigenvalues in order.80



3.7. U(R) for n particlesThe highest weight state of the Schwinger representation will have all the quantain the oscillator a1. This makes e12 maximum andm1 maximum. This highest weightwill be 2sn j�i where j�i is the highest weight state of the Schwinger representationwith just one quanta,j�i = je12 = 1=2; : : : ; e1n = 1=2; 0; : : : ; 0;m1 = 1=2; 0; : : : ; 0i (3.61)This highest weight � is also the highest weight of the 2n�2n de�ning representationof SU(2n) whose matrix generators we de�ned. As a basis vector in the de�ningrepresentation j�i = 0BBBBBB@ 10...0
1CCCCCCA (3.62)The representation of SU(2n), which has a highest weight that is 2sn times thehighest weight of the de�ning representation, is labelled by a Young tableau with asingle row of 2sn boxes, see section 2.6.4.

...This con�rms that the Schwinger representation is a symmetrised tensor product ofde�ning representations as those are the symmetry conditions recorded by such atableau.
3.7 U(R) for n particlesFor n particles the operator U(R) which generates the position-dependent spin basiswill have the form. U(R) = exp(�i nXi<j=1 cij(R):Eij) (3.63)The operator must still generate a position dependent basis which is smooth, paralleltransports and where j�M(�R)i = (�1)k sgn(�)jM(R)i (3.64)81



Chapter 3. Quantum indistinguishabilitywhich derives from the condition that a single state represents all permutations ofparticles. We have just seen that the operators Eij are naturally associated withthe group SU(n). In the same way the operator U(R) is connected to an elementu(R) of SU(n). u(R) = exp(�i nXi<j=1 cij(R):E ij) (3.65)U(R) is the Schwinger representation of the element u(R) in the SU(n) subgroupof SU(2n). We can express this as U(u(R)).We want to �nd the e�ect of the permutation condition (3.64) on the elementsu(R) of SU(n) used in the construction. To do this we must write the state j�Miin terms of jMi. As all permutations can be written as a product of two cycles wewill begin by considering the exchange of the �rst two particles �12. As with then = 2 construction we can use the �xed exchange rotation exp(�i�E12y )j�12Mi = (�1)2s exp(�i�E12y )jMi= (�1)2sU(exp(�i�E12y ))jMi (3.66)The element of SU(n) that produces the exchange isexp(�i�E12y ) = 0BBB@ 0 1�1 0 I 1CCCA (3.67)where I is the 2n � 2 by 2n � 2 identity matrix. This is an example of a phasedpermutation matrix 0BBBBBB@ ei�1 ei�2 . . . ei�n
1CCCCCCAD(�)where exp(iP�j) = sgn(�) and D(�) is the n � n de�ning representation of thepermutation �. These phased permutation matrices are a subgroup of SU(n) andthe operator U associated with one of them will permute the n spins. For a general82



3.7. U(R) for n particlespermutation � j�Mi = (�1)k sgn(�)U(fei�1 ; : : : ; ei�ngD(�))jMi (3.68)where the diagonal matrix of phases has been abbreviated fei�1 ; : : : ; ei�ng. Fromthe permutation condition (3.64)U(uy(R)u(�R))j�Mi = (�1)k sgn(�)jMi (3.69)For this to be true for all jMi the element uy(R)u(�R) of SU(n) must also be aphased permutation matrix. This gives us a condition on the map u(R) from thecon�guration space to SU(n)u(�R) = u(R)fei�1 ; : : : ; ei�ngD(��1) (3.70)Selecting a map u with this property also de�nes the operators U(R).We will now show that k = 2s for any operators U(R) with the required prop-erties. This will involve the exchange of the �rst two particles �12 using the �xedexchange rotation exp(�i�E12y ). The permutation condition (3.64) can be writtenas U y(R)U(�12R) exp(�i�E12y )jMi = (�1)k�2sjMi (3.71)The related element of SU(n) is thenuy(R)u(�12R) exp(�i�E12y ) =0BBB@ ei�1 . . . ei�n 1CCCA0BBB@ 0 11 0 I 1CCCA0BBB@ 0 1�1 0 I 1CCCA (3.72)This is a diagonal element of SU(n) and so must be generated by the matrices E ijz .uy(R)u(�12R) exp(�i�E12y ) = exp(�iXij cijE ijz ) (3.73)Therefore the eigenvalues of the state jMi, for which we have the condition EzjMi =0, are unity and consequently in the eigenvalue equation (3.71) k is 2s.83



Chapter 3. Quantum indistinguishabilityWe have yet to show that there actually exist maps u(R) from the con�gurationspace to SU(n) which have the property (3.70) and produce a smooth position-dependent basis jM(R)i when n greater than two. This is the statement of theproblem reached in [8]. If such a map exists then using the Schwinger representationof spin states j�M(�R)i = (�1)2sjM(R)i (3.74)The spin-statistics connection then follows as in section 3.3.3.7.1 Maps from con�guration space to SU(n)The existence of such a map is an interesting geometrical problem. In [2] [1] and[3] Atiyah constructs a map with the required properties; however there are stillimportant unanswered questions which relate to an alternative more aesthetic con-struction.In the simplest but unproved construction u(R) is obtained by orthogonalisingan n � n matrix w(R) where the j'th column of w(R), wj(R), is associated withparticle j so the permutation condition (3.64) for the columns of the matrix is sat-is�ed.The direction of the particle i seen from j is tij,tij = (ri � rj)jri � rjj (3.75)Each of the n � 1 directions from the particle j can be described by its complexstereographic coordinates, �i. A unit sphere is centred at rj and a line is drawnfrom the south pole through the point where the line connecting particles j and iintersects the sphere. The line from the south pole intersects the equatorial planeof the sphere and the Cartesian coordinates of the point where it meets the planeprovide the real and imaginary parts of �i. The components of wj, wkj, are thecoe�cients of z in the polynomialPj(z) = Yi=1:::n�1(z � �i) = Xk=1:::n zi�1p(k � 1)!(n� k)!wkj (3.76)84



3.7. U(R) for n particlesTo orthogonalise the columns of w(R) the vectors wj(R) must be linearly indepen-dent for all con�gurations R. This is surprisingly di�cult to prove and to date ithasn't been done although numerical results for detw(R) are encouraging. It canbe proved for n = 2 or 3 and in some of the hard cases where it might be expectedto fail, for example when all the particles are in a line.To construct a speci�c map which has the required properties Atiyah uses aprocedure which breaks the translational symmetry of the problem and �xes anorigin. The previous construction was independent of the origin used to de�ne thevectors rj in R. The construction follows a similar procedure to the more elegantconstruction described previously. We also de�ne polynomials Pj(z) but now thevalues of j are distinguished.(a) If jrj j � jrij then tij = rj=jrj j.(b) If jrj j � jrij then tij is the second intersection of the line (ri � rj) with thesphere of radius jrij, see �gure 3.1.
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ijFigure 3.1: The de�nition of tij for jrj j � jrijThe complex stereographic coordinates of the directions tij are again used tode�ne the polynomials. The construction is still compatible with the permutationcondition as permuting the coordinates rj alters the labels of the points but not thegeometry of the con�guration which determines the polynomials.In this construction of the map the polynomials Pj can be shown to be linearlyindependent. The proof is by induction on n. Take rn to be the vector of greatest85



Chapter 3. Quantum indistinguishabilitymagnitude, jrnj � jrj j for all j. Q1; : : : Qn�1 are the polynomials de�ned by thesmaller con�guration (r1; : : : ; rn�1) of degree n � 2 which we take to be linearlyindependent. We choose the complex parameter on the sphere so that rn lies atin�nity. Then for j � n � 1 the polynomial of the n points is Pj = Qj. While Pnis a polynomial of genuine degree n � 1 as none of its roots are in�nite. Thereforethe set of polynomials P1; : : : ; Pn is still linearly independent. The induction thenstarts from the trivial case n = 2.With a map from the con�guration space of the particles to SU(n) which hasthe required permutation properties the Schwinger construction of the position-dependent spin basis can proceed. We have already seen that the exchange sign isindependent of the particular choice of map and will give the observed spin-statisticsrelation.3.7.2 Smoothness and parallel-transport for n particlesThe parallel-transport of the position-dependent basis for two particles was demon-strated using the condition E12z jMi = 0 (3.77)For the Schwinger representation of n spins we still have the conditionEijz jMi = 0 (3.78)and the same argument can be applied to show that the spin-basis is parallel trans-ported. We see that this parallel transport condition is also independent of thechoice of map u(R) used in the construction.For the position-dependent basis to be a smooth function of R the map u(R)from con�guration space to SU(n) must also be a smooth function of R up to mul-tiplication on the right by a diagonal matrix. In the �rst construction the matrixw is smooth up to multiplication of the columns by phase factors and so wouldgenerate a smooth position-dependent basis. In the second construction the change86



3.8. Alternative constructionsbetween the two regimes as rj moves across the sphere of radius jrij is not smooth.The construction is still however continuous and can be made smooth so this isonly a technical problem. Given that we know a map u(R) exists which generatesa position-dependent basis with the required properties, 3.2.1-3.2.3, the exchangesign of jM(R)i is determined by the Schwinger representation of the spins.
3.8 Alternative constructionsCombining the Schwinger representation of spin with the map u(R) found by Atiyahprovides constructions of a position dependent spin basis for n particles with all therequired properties so that, in this framework, the singlevaluedness of the wavefunc-tion requires that the system obey the spin-statistics theorem. In [9] BR consideralternative constructions with the properties introduced in [8] which don't producethe physically correct spin-statistics relation.The �rst alternative construction involves a change in representation of SU(2n).The commutators for the creation and annihilation operators in the Schwinger rep-resentation are replaced by anticommutators. Anticommutators imply that a2j = 0,with similar relations for the other operators of the harmonic oscillators, so the rep-resentation can only have a single quantum in each oscillator. This means that therepresentation is limited to states of spin-1=2.In this anticommuting Schwinger representation n spin-1=2 particles are repre-sented by a distribution of n quanta between the oscillators with at most a singlequantum in each. The highest weight state of this representation will be the statewith the �rst n oscillators a1; b1; a2; : : : �lled. The weight of this state is the sum ofthe �rst n weights of the anti-Schwinger representation with a single quantum. Withonly a single quantum the anticommutation relations can't a�ect the available states.So the anticommuting Schwinger representation with a single quantum is isomor-phic to the de�ning representation of SU(2n), which is the commuting Schwingerrepresentation with a single quantum. The sum of the �rst n maximal weights of the87



Chapter 3. Quantum indistinguishabilityde�ning representation of SU(2n) is the de�nition of the n'th fundamental weightand consequently the n spin-1=2 anti-Schwinger representation is isomorphic to therepresentation of SU(2n) labelled by a Young tableau with a single column of nboxes.
..
.

Calculations using the anti-Schwinger scheme showj�M(�R)i = +jM(R)i (3.79)The wavefunctions on this basis will be symmetric under permutations. This isbosonic behaviour for spin 1=2 particles, not the correct spin-statistics relation.This alternative construction is an example of the generalisation we will investigate.In this alternative construction the position-dependent basis has all the propertiesrequired in 3.2. We therefore deduce that the spin-statistics connection depends onthe representation used for the spin states.A second alternative construction is for two spin zero particles. In this case theposition-dependent spin basis is represented by the unit vector in the direction rjM(r)i = r=jrj (3.80)where only one vector, for example ẑ, corresponds to the spin vector j0; 0i in thenormal representation of spin. When �r is substituted for r this position dependentbasis changes sign despite the integer spin. The wrong spin-statistics connection.Both these alternative constructions of a spin-statistics connection are unsatis-factory. They each apply to a single value of spin and in the second case only totwo particles. However they illustrate that the requirements introduced in section3.2 are insu�cient to derive the spin-statistics theorem on their own.88



3.9. Parastatistics3.9 ParastatisticsOne interesting generalisation of the condition 3.2.2 that can be made is to allowa set of states, labelled by an additional quantum number �, to represent both theinitial and permuted states. The position-dependent basis is then jM � (R)i and wecan take the �xed spin basis jM�i to be orthonormal.hM0 �0jM�i = �MM0���0 (3.81)The permutation condition 3.2.2 is nowj�M� (�R)i =X� c���(R)jM� (R)i (3.82)and the parallel-transport condition 3.2.3 ishM0 �0 (R)jrM� (R)i = 0 (3.83)Using these conditions we will derive the properties of the coe�cients c���(R).From the orthogonality condition (3.81) we can writeh�M0 �0 (�R)j�M� (�R)i = ���0�MM0 (3.84)Using the exchange condition this isX�0� c��0�0(R) c���(R) hM0 �0 (�R)jM� (�R)i = ���0�MM0 (3.85)Applying the orthogonality of the states for a second time this reduces to an equationfor the coe�cients, X� c��0�(R) c���(R) = ���0 (3.86)If we let C�(R) denote a matrix with elements c���(R) then equation (3.86) is equiv-alent to the matrix equation C�y(R)C�(R) = I (3.87)The matrix of coe�cients C�(R) is unitary.89



Chapter 3. Quantum indistinguishabilityUsing the permutation condition (3.82) we can writeh�M0 �0 (�R)jrj�M� (�R)i =P�0� c��0�0(R)c���(R)hM0 �0 (R)jrM� (R)i+P�0� c��0�0(R)(rc���(R))hM0 �0 (R)jM�(R)i (3.88)Applying the parallel transport condition (3.83) on both sides of the equation we�nd C�y(R)rC�(R) = 0 (3.89)As C�(R) is unitary this implies rC�(R) = 0 (3.90)The matrix C�(R) is a constant and so is independent of R.Taking the two permutations � and � we will expand the state obtained byapplying both permutations to jM�(R)i.j��M�(��R)i = C�j�M�(�R)i= C�C�jM�(R)i (3.91)From (3.82) the action of the combined permutation �� isj��M�(��R)i = C��jM�(R)i (3.92)We see that the matrices C� de�ne a representation of Sn.C�C� = C�� (3.93)The representation acts on the additional quantum numbers �. Any representationC(Sn) can be decomposed into a direct sum of irreducible representations. Takinga spin state jM
i in one of these irreducible representations then acting with U(R)we obtain only other vectors in the irreducible representation. Each irreduciblesubspace is invariant under the action of U . The position-dependent spin basisdecomposes into subspaces that transform according to the irreducible representa-tions of Sn in C. In this generalisation of the BR construction it is possible for the90



3.10. The components of the BR constructionposition-dependent basis to transform according to any irreducible representation ofSn. Those subspaces transforming according to the higher dimensional representa-tions exhibit parastatistics.Changing condition 3.2.2 in the construction allows the position-dependent basisto exhibit parastatistics. The same parastatistics will also be present in the wave-functions de�ned on this basis. By noticing that parastatistics would be consistentwith the alternate condition (3.82) we do not in any way change the results for theconstruction made using the Schwinger representation. In the Schwinger construc-tion parastatistics is not present, the spin states can only transform according toa one dimensional representations of the permutation group which ever version ofcondition 3.2.2 we impose on the construction.
3.10 The components of the BR constructionTo see how the construction can be generalised it will be useful to summarise theessential ingredients that give the BR construction the properties required in section3.2. This will also demonstrate why the anti-Schwinger construction is viable. Re-calling section 3.2, the three requirements on the position-dependent basis are thatit is smooth, parallel-transports and under permutations of the positions and spinsj�M� (�R)i =X� c���(R)jM� (R)i (3.94)This is the more general permutation condition that allows parastatistics. In theprevious section by combining (3.94) with the parallel-transport condition we foundthat states of the position-dependent spin basis must transform under permutationsaccording to an irreducible representation of Sn, equation (3.92).We will consider the construction of the position dependent basis using the ex-change algebra of operators Eij. In order for the operator U(R) to generate a basisthat exchanges spins along with positions we saw that the related map u(R) from the91



Chapter 3. Quantum indistinguishabilitycon�guration space of the n particles to SU(n) must have a permutation property,u(�R) = u(R)fei�1 ; : : : ; ei�ngD(��1) (3.95)Including parastatistics does not change this requirement. The map should also besmooth up to multiplication by a diagonal matrix if the position-dependent basis isto be smooth. Given such a map we want to be precise about the information usedto demonstrate that jM(R)i has the three required properties.For the position-dependent basis to be smooth we know already that the mapu(R) which de�nes U(R) must be smooth up to multiplication by a diagonal ma-trix. Given the permutation condition on the map (3.95) multiplying U(�R)U y(R)by any �xed exchange rotation which permutes the spins produces an operatorexp(�iPij �(R)ijEijz ). We have the condition on the spin statesEijz jMi = 0 (3.96)This implies that exp(�iXij �(R)ijEijz )jMi = jMi (3.97)and there can be no extraneous phase introduced, the position-dependent basis issmooth.The argument for parallel transport is also based on the spin states jMi beingnull states of the z components of the exchange algebra. As long as this is the casethe position-dependent basis parallel transports spins.The permutation condition on the spin states in the position dependent basis issatis�ed given any map u(R) with the property (3.95). To demonstrate that theexchange sign is topological, independent of the particular choice of u(R), we alsoused the property (3.96) of the spin states. We now see that the success of theconstruction is derived from two basic properties. Firstly the existence of a mapu(R) from con�guration space to SU(n) with the required permutation propertyand smooth up to multiplication by a diagonal matrix and secondly that the spin92



3.11. Summaryvectors where the n spins are equal are null states of the Cartan sub-algebra of theexchange algebra, (3.96).We can now see why the anti-Schwinger scheme is also possible. Changing thecommutation relations of the creation and annihilation operators does not e�ecteither of these basic properties of the construction. In fact we see that to produce aposition-dependent basis with the required properties we have not referred directly tothe Schwinger representation of the spin states at all. The Schwinger scheme providesthe necessary representation of the operators which form the su(2n) algebra fromwhich the exchange sign is calculated but a di�erent representation of su(2n) couldstill produce a satisfactory position-dependent basis. A representation T (SU(2n))must simply include states jMi where the total spins of the n particles are equaland where T (E ijz )jMi = 0 (3.98)Any map u(R) used to de�ne a Schwinger construction will then apply equally wellto this alternative construction.
3.11 SummaryIn this chapter we have seen that in order to generate a position-dependent spinbasis which exchanges spins along with positions, the algebra of spin operators canbe extended to included an algebra of exchange operators. Spin basis vectors arenow vectors in a representation of SU(2n). The permutations of spin with positionare generated by a map from the con�guration space of the particles to SU(n) thegroup generated by the exchange algebra. While explicit constructions of this mapexist, due to Berry and Robbins for n = 2; 3 and Atiyah in the general case, theproperties of the position dependent basis under permutations are determined bythe representation of spin used and are the same for all maps with the requiredproperties. 93



Chapter 3. Quantum indistinguishabilityThe position-dependent basis transforms under permutations of the particlesaccording to a representation of Sn. For the Schwinger spin basis this is the trivialrepresentation for particles of integer spin and the alternating representation forhalf-integer spin. The transformation properties of the position-dependent basisdetermine how a wavefunction transforms under permutations. Consequently for theSchwinger scheme wavefunctions on the position dependent spin basis are requiredto obey the spin-statistics theorem. In order for the position-dependent spin basis tobe smooth, parallel-transported and have the correct permutation property, the spinbasis vectors must have zero weight with respect to the Cartan sub-algebra of su(n).Replacing the Schwinger representation with another representation of SU(2n) willproduce an alternative construction of the position dependent basis. It will haveall the required properties but may transform under a di�erent representation ofSn leading to the wrong spin-statistics relation, as occurs with the anti-Schwingerconstruction. So we are led to the question, for a general representation of SU(2n)what is the relationship between spin and statistics?
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Chapter 4
Calculation of the exchange signfor the irreduciblerepresentations of SU (4)
In this chapter we will generalise the Berry-Robbins construction for two spinningparticles to �nd the exchange sign for irreducible representations of SU(4). This isthe simplest form of the construction, not only as it has the least particles but thepermutation group has only two irreducible representations. The elements of S2 areI and (12), both form their own class, and the two irreducible representations arethe trivial representation and the alternating representation, both one dimensional.In this straightforward case we expect to be able to directly assemble the variousspin bases jMi that the representations can act on. The position dependent basiswill be constructed in the same way as for the Schwinger representation, by a unitarytransformation generated by the exchange algebra. If this subspace transforms underpermutations of the particles as the trivial representation of S2 the particles arebehaving as bosons and the wavefunction is symmetric under exchange. Conversely,spin vectors in a subspace transforming according to the alternating representationof S2 are fermionic, their wavefunctions are antisymmetric under exchange.95



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)4.1 The group SU(4)SU(4) is the group of 4� 4 unitary matrices with determinant one. The generatorsof the group can be de�ned in terms of the generators of the two spins and of theexchange algebra as in equations (3.57) and (3.58).S1i = 12 0@ �i 00 0 1A S2i = 12 0@ 0 00 �i 1AEx = 12p2 0@ 0 II 0 1A Ey = 12p2 0@ 0 �iIiI 0 1A
Ez = 12p2 0@ I 00 �I 1A

(4.1)
�i are the Pauli matrices and I is the 2 � 2 identity matrix. The commutators ofthese matrices provide the remaining six generators in the algebra. A representationof the group determines a representation of the generators. Let V denote the carrierspace of the representation, the spin vectors jMi belong to V .
4.2 The spin subspaceIn our discussion of the Schwinger representation in chapter 3 we saw that V iscomposed of states j�i = (ay1)na1 (ay2)na2 (by1)nb1 (by2)nb2 j0i (4.2)where the spins of the two particles may be di�erent. Similarly for a general rep-resentation only a subspace W of V contains spin states that can be used in theconstruction. Spin vectors, jMi, in W have two properties;4.2.1 jMi is an eigenvector of S21 and S22 with the same value of total spin s for bothparticles.4.2.2 EzjMi = 0; that is, the spin vectors are zero weight states of the exchange alge-bra. This ensures the position dependent basis is smooth, parallel-transported96



4.3. Preparing the subspace Wand that the exchange sign is topological.These two conditions de�ne the subspace W to which the Berry Robbins construc-tion can be applied. As we showed in chapter 3 the properties of the positiondependent basis depend on the commutation relations of the generators, which area property of the algebra, and the conditions on the spin vectors jMi. The problemnow breaks down into two parts, �nding W for a general representation of SU(4),sections 4.3 and 4.4, and determining the exchange sign for a vector in W , section4.5 and following.
4.3 Preparing the subspace WAn irreducible representation of SU(4) is labelled by three integersf = (f1; f2; f3)These are the lengths of the rows of the corresponding Young tableau and we cantake f1 � f2 � f3. A vector in an irreducible representation of SU(4) is constructedby taking a tensor product of states of the de�ning representation of SU(4) andapplying a characteristic unit of the symmetric group generated by the tableau f .We will construct vectors in the carrier space of f which belong to W .
4.3.1 Basis vectors of the tensor product representationAs in the discussion of su(4) in section 2.5.3 the basis vectors of the de�ning repre-sentation are eigenvectors of the Cartan sub-algebra,

Ez = 12p2 0BBBBBB@ 1 0 0 00 1 0 00 0 �1 00 0 0 �1
1CCCCCCA S1z = 12 0BBBBBB@ 1 0 0 00 �1 0 00 0 0 00 0 0 0

1CCCCCCA (4.3)
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Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)
S2z = 12 0BBBBBB@ 0 0 0 00 0 0 00 0 1 00 0 0 �1

1CCCCCCAThe eigenvectorsx1 = 0BBBBBB@ 1000
1CCCCCCAx2 = 0BBBBBB@ 0100

1CCCCCCAx3 = 0BBBBBB@ 0010
1CCCCCCAx4 =0BBBBBB@ 0001

1CCCCCCA (4.4)
are labelled by weights (ez ; s1z; s2z).�1 = ( 12p2 ; 12 ; 0) �2 = ( 12p2 ;�12 ; 0)�3 = (� 12p2 ; 0; 12 ) �4 = (� 12p2 ; 0;�12 ) (4.5)The weight �j labels the vector xj .A basis vector of the tensor product of de�ning representations is a tensor prod-uct of basis vectors from (4.4)x0 = xj 
 xl 
 � � � 
 xk (4.6)We will use the notation Nj(x0) for the number of basis vectors xj used in x0 andN(x0) for the total number of terms in the tensor product.
4.3.2 Basis vectors of irreducible representations of SU(4)To prepare a vector in the carrier space of f , the vectors xj in (4.6) are assigned toboxes of the tableau f . The tensor product is symmetrised with respect to the termsin the rows of the tableau and then antisymmetrised with respect to the columns.This is the application of a primitive characteristic unit of SN(x0) to the tensor prod-uct. 98



4.3. Preparing the subspace WFor example if we take the representation (3; 1) of SU(4) we assemble vectors inV from the tensor product of four basis vectors. Letx0 = x1 
 x4 
 x2 
 x4 (4.7)We assign these vectors to the tableau (3; 1),
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The label A denotes that the vector has now been antisymmetrised with respect tothe columns. The vectors in the central row cancel leaving
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AS ASThis is a basis vector of the representation (3; 1) of SU(4). Alternatively the vectorcould be written as a linear combination of tensor products of the xj 's where eachterm is a permutation of (4.7). By recording the vector using tableau we avoid spec-ifying the order of the terms in the tensor product. Each box in the Young tableau99



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)corresponds to a particular term in the tensor product but as this correspondenceis arbitrary it is convenient to be able to suppress it.4.3.3 Basis vectors of a representation of SU(2)� SU(2)The SU(2) � SU(2) subgroup is generated by S1 and S2. A representation ofSU(2) � SU(2) is de�ned by two representations of SU(2) each of which can belabelled by a Young tableau. Vectors in a representation of SU(2)� SU(2) are thetensor product of vectors of the two representations of SU(2). The basis vectors ofthe de�ning representation of S1 are x1 and x2 while x3 and x4 are a basis of S2.To record a vector in a representation of SU(2)�SU(2) using tableau we assign thevectors x1 or x2 to the �rst tableau and x3 or x4 to the second. For example
1
2

1 2 3 4In this case both representations of SU(2) are spin one and the vector has s1z =s2z = 0. To construct vectors in an irreducible representation of SU(2) � SU(2)we apply the SU(2) symmetry conditions for both SU(2) tableau to a vector in thetensor product representation.4.3.4 s
 s multiplets in representations of SU(4)The unitary groups have been applied successfully to problems in particle physicsconcerning the decomposition of a representation into irreducible components ofa subgroup of U(n). In [37] Itzykson and Nauenberg use Young tableau to de-compose an irreducible representation of SU(m + n) into representations of theSU(m) � SU(n) subgroup. This problem is related to �nding the subspace W de-�ned previously. Applying their results to SU(4) � SU(2)�SU(2) gives the numberof s1 
 s2 multiplets in a representation of SU(4). The multiplets where the spineigenvalues are both equal form the subspace where the spins are the same, de�nedin 4.2.1. This subspace contains W . 100



4.3. Preparing the subspace WRepresentations of SU(2) � SU(2) where both components have spin s are la-belled by two SU(2) tableau both of which have 2s columns of length one.
α 2s
α

β
β

2sColumns of two boxes don't a�ect the representation of SU(2) labelled by thetableau, see section 2.6.4. Representations of SU(4) which, when restricted to theSU(2)�SU(2) subgroup, contain this representation are those whose tableau appearwhen the two tableau labelling the representation of SU(2)� SU(2) are multiplied.Multiplying tableau, see section 2.9.1 for the rules, doesn't change the total numberof boxes so the number of boxes in the representation of SU(4) is 4s+2�+2�. Thisis even and so only representations of SU(4) labelled by tableau f where jf j is evencan contain s
 s multiplets. This agrees with the known results for the Schwingerrepresentations which correspond to tableau with a single row of 4s boxes, as in 3.6.We see that when constructing the subspace W we need only consider represen-tations where jf j is even. Representations with jf j odd contain no multiplets wherethe spins of the two particles are equal. If the same tableau f appears when twopairs of tableau for di�erent values of spin, s and s0, are multiplied then f has boths0 
 s0 and s
 s multiplets. This is a common situation, for example the tableau
appears in the product of both the tableau multiplications
Consequently the representation (4; 2) of SU(4) contains s
s multiplets for s = 1=2and s = 3=2. We can see that a general representation of SU(4) is likely to be morecomplex than the Schwinger scheme, selecting the representation of SU(4) will notin general �x the value of spin and there may be many multiplets with the samevalue of spin. 101



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)4.3.5 Spin vectors with zero weight with respect to the exchangealgebraCondition 4.2.2 used to de�ne the subspaceW requires vectors inW to be eigenvec-tors of Ez with eigenvalue zero. In the tensor product representation the generatorEz is represented by E0z,E0z = Xall permutations I 
 � � � 
 I 
 Ez 
 I 
 � � � 
 I (4.8)The sum is over all the possible positions of Ez in the tensor product. Using (4.5)we see that x0 is an eigenvector of E0z with eigenvalueez = 12p2(N1(x0) +N2(x0)�N3(x0)�N4(x0)) (4.9)Similarly x0 is also an eigenvector of S01z and S02z with eigenvaluess1z = 12(N1(x0)�N2(x0)) (4.10)s2z = 12(N3(x0)�N4(x0)) (4.11)From 4.3.2 a basis vector in an irreducible representation f of SU(4) is a linearcombination of vectors x0 all of which have the same weight (ez; s1z; s2z). Conse-quently such a basis vector of an irreducible representation of SU(4) also has weights(4.9), (4.10) and (4.11), where Nj(x0) is the number of vectors xj used to preparethe vector in V .From (4.9) x0 is a null vector of Ez if and only if,N1(x0) +N2(x0) = N3(x0) +N4(x0) (4.12)This provides one condition on spin vectors jMi in W .
4.4 s
 s multiplets with Ez eigenvalue zeroAn irreducible representation �f (SU(4)) can be restricted to the subgroup SU(2)�SU(2) generated by the spin operators. This representation �f (SU(2)�SU(2)) can102



4.4. s
 s multiplets with Ez eigenvalue zerothen be decomposed into irreducible components,�f (SU(2) � SU(2)) = Ms1;s2;ez ��s1;s2;ez(SU(2) � SU(2))� (4.13)An s1 
 s2 multiplet is labelled by a pair of tableau
α
α

1 β
β

2s2s 2From section 4.3.3 and the eigenvalue equation (4.9) we see that the Ez eigenvalueof such a multiplet is ez = 12p2(2s1 + 2�� 2s2 � 2�) (4.14)Each s1 
 s2 multiplet has a de�nite value of ez. The s1 
 s2 multiplets are distin-guished not only by the two spins but also by the eigenvalue of Ez.The number of SU(2) � SU(2) multiplets in a representation of SU(4) is thefrequency of the tableau f in the product of the two tableau labelling the multiplet.Combining the condition (4.12) for the Ez eigenvalue of the multiplet to be zero withthe condition that s1 = s2 the multiplet is labelled by two tableau where � = �.The number of representations �s;s;0 in the decomposition of a representation of fis the number of tableau f in the product of the two identical tableau which labelthe multiplet.The tableau (2; 1) labels a spin-1=2 irreducible representation of SU(2). Sovectors in an s
 s multiplet with spin-1=2 and Ez-eigenvalue zero can, for example,be labelled by a pair of (2; 1) tableau
Multiplying these tableau produces tableau with six boxes.

2
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Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)Each irreducible representations of SU(4) labelled by one of these tableau containsthe representation
when restricted to the SU(2)�SU(2) subgroup. In the example above the represen-tations (3; 13) and (22; 12) of SU(4) are equivalent to those labelled by the partitions(2) and (12) respectively. If a tableau appears more than once in the product thenthis representation of the subgroup contains multiple copies of the representationof �s;s;0 when decomposed into its irreducible components. In our example (3; 2; 1)contains two s
 s multiplets with spin-1=2 and ez = 0.4.4.1 Results for general multipletsWe will consider the general result of multiplying two identical tableau s with spins. As the lengths of the rows of this tableau could easily be confused with thespins of the two particles we will distinguish the two cases with an extra label Tfor tableau. The partition s is then (sT1; sT2) and the spin of the representation ofSU(2) labelled by this partition iss = 12(sT1 � sT2) (4.15)As s is a tableau we know that sT1 � sT2 (4.16)The multiplication of two such tableau is written

s T2

s T1 s

b

T1

s T2

aFollowing the usual rules for multiplying Young tableau we label the boxes in the �rstrow of the second tableau with the symbol \a" and the second row of the tableau \b".A general result of such a multiplication can be written104



4.4. s
 s multiplets with Ez eigenvalue zero
α(a)

(a)γ
δ(b)

ε3 (b)

s T1

s T2

f
f
f

β(a)
1

2Where the a's are in sections of length �, � and 
,�+ � + 
 = sT1 (4.17)Similarly the b's are in the sections of length � and ",� + " = sT2 (4.18)The rows of the resultant tableau have lengths f1, f2 and f3 respectively,2(sT1 + sT2) = f1 + f2 + f3 = jf j (4.19)jf j is the total number of boxes in the tableau. The general product tableau that weare considering has only three rows. Multiplying two tableau of two rows it is possi-ble, as we saw previously, to produce tableau with columns of four boxes. Howevertableau with columns of four boxes label a representation of SU(4) equivalent tothat labelled by the tableau with the columns of four boxes removed. Consideringonly the tableau with three rows is su�cient to provide results for all representationsof SU(4).There are several rules used in the multiplication of Young tableau, section 2.9.1.These produce conditions on the lengths of the sections of the resultant tableau.Firstly the result of the multiplication must be a tableau, its rows decreasing inlength, f1 � f2 � f3 (4.20)Then when the boxes labelled with a's are added to the �rst tableau they can notbe put on top of each other. This implies that� � sT1 � sT2 (4.21)
 � sT2 (4.22)As b's also can't be placed in the same column we obtain a forth conditionf3 � sT2 + � (4.23)105



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)Counting right to left and top to bottom the number of a's must always be greaterthan or equal to the number of b's. This provides two further conditions on thelengths of the sections in our general product tableau.� � � (4.24)�+ � � sT2 (4.25)Suppose that given tableau s and f there exists a set of variables �; �; 
; �; "which satisfy conditions (4.20) to (4.25) and so de�ne one of the tableau of shape fin the product s� s. f1 = sT1 + � (4.26)f2 = sT2 + � + 
 (4.27)f3 = � + " (4.28)We will de�ne a procedure that changes the labelling of the boxes in f withoutchanging its shape. This will be referred to as procedure A. A moves a box labelledb from the third row up to the second and a box a down from the second to thethird row. � ! � � 1� ! � + 1
 ! 
 + 1" ! "� 1 (4.29)Schematically this is
a

bWe see that not only does A not change the length of the rows in f it also doesn'talter the total number of a's or b's in f . Applying A de�nes a second labelling of f .To determine if this alternate labelling is a possible result of the tableau multipli-cation we must check if the new variables �; �0; 
0; �0; "0 satisfy the conditions (4.20)to (4.25). A and its inverse are the only such exchanges of boxes which can produce106



4.4. s
 s multiplets with Ez eigenvalue zeroan alternative labelling of the boxes of the tableau which is also a possible result ofthe multiplication of the two tableau.To �nd the total number of tableau of shape f in the product s � s the idea isto start from the tableau with the maximum number of b's in the third row andthen count how many times A can be applied before the conditions for multiplyingtableau are violated. This will give the number of s
 s multiplets in the represen-tation f of SU(4) with ez = 0." is the number of boxes labelled b in the third row of the tableau. First weconsider those conditions that restrict the maximum value of ". " can not be greaterthan the length of the third row of f by de�nition and it can contain at most all sT2of the b's. In order for " to be a maximum � must be a minimum and so � mustalso be maximum. Condition (4.21) determines the maximum value of �. Collectingthese conditions " � f3 by de�nition" � sT2 maximum no. of b's" � sT1 + sT2 � f2 max � from (4.21) (4.30)The maximum value of " is equivalently the minimum value of 
, the maximumvalue of � or the minimum value of �. There are �ve conditions which limit theminimum value of ". " � 0 by de�nition" � f3 � sT2 from (4.22)" � f3 � f2 + sT2 from (4.23)" � sT1 + sT2 � f1 from (4.24)" � f3 + sT2 � f1 from (4.25) (4.31)
Every " satisfying conditions (4.30) and (4.31) corresponds to an s 
 s multiplet.There are three possible maximum values of " de�ned by (4.30). The smallest ofthese maximums is "max. Similarly the maximum of the �ve lower bounds on "(4.31) is "min. The number of " satisfying the conditions is then ("max � "min + 1).To evaluate this we consider the �fteen combinations that result from combining107



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)each of the three upper bounds with each of the �ve lower bounds. These possiblevalues of ("max�"min+1) are enumerated in (4.32) below. Four of the combinationsare redundant as they are equivalent to other pairs. The variable f3 has also beeneliminated from the results using equation (4.19).1) sT2 + 12) f1 � f2 + 13) f1 � sT1 + 14) f1 � 2sT2 + 15) f2 � sT2 + 16) sT1 � sT2 + 17) f1 + f2 � 2sT1 + 18) sT1 + sT2 � f2 + 19) f1 + f2 � sT1 � 2sT2 + 110) f1 + 2f2 � 2sT1 � 2sT2 + 111) 2sT1 + 2sT2 � f1 � f2 + 1
(4.32)

To �nd the number of s
 s multiplets in the representation f we �nd the minimumof the eleven integers de�ned in (4.32). If this is negative or zero then there are nosuch multiplets in f .It is interesting to note that in �xing the representation of SU(4), even thoughwe do not �x the spin of the multiplets, we do determine whether their spins areinteger or half integer. Choosing f de�nes the number of boxes jf j in the tableauand the number of boxes jsj = jf j=2 in the representations of the spins. Changingthe spin s involves moving boxes from the �rst row of s to the second. Moving asingle box in this manner changes the number of columns of one box by two whichchanges the spin by an integer amount. Hence the spins of all multiplets in therepresentation are either integer or half-integer.4.4.2 Example: The s
 s multiplets of (7; 5; 2) with ez = 0
108



4.4. s
 s multiplets with Ez eigenvalue zeroBy choosing a tableau with a relatively large number of boxes and three rows weexpect to �nd several s
s multiplets. As the number of boxes in the tableau is eventhe representation will contain s
 s multiplets with Ez eigenvalue zero. To producethe tableau (7; 5; 2) the two tableau s that we will multiply must each contain sevenboxes. This translates to representations of SU(2) with half integer values of spinbetween 7=2 and 1=2. We can take each value of spin in turn and evaluate theintegers (4.32) for these values of f1; f2; sT1; sT2.Starting with spin-1=2, (sT1 = 4; sT2 = 3), evaluating the integers (4.32) we �ndsT2 + 1 = 4f1 � f2 + 1 = 3f1 � sT1 + 1 = 4f1 � 2sT2 + 1 = 2f2 � sT2 + 1 = 3sT1 � sT2 + 1 = 2f1 + f2 � 2sT1 + 1 = 5sT1 + sT2 � f2 + 1 = 3f1 + f2 � sT1 � 2sT2 + 1 = 3f1 + 2f2 � 2sT1 � 2sT2 + 1 = 42sT1 + 2sT2 � f1 � f2 + 1 = 3
(4.33)

The minimum of these integers is two so there are two spin-1=2 multiplets withez = 0 in the representation (7; 5; 2) of SU(4). Continuing this procedure we can �llout a table, �gure 4.1, showing the spin of the multiplets available for the construc-tion of the position dependent basis.Figure 4.1: The s
 s multiplets of the representation (7; 5; 2) of SU(4) with ez = 0multiplet spin no. of multiplets1=2 23=2 35=2 17=2 0109



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)4.5 The exchange signSo far we have found the subspace of spin vectors W for which the constructionof the position-dependent spin basis is de�ned. As a representation of SU(4) cancontain many multiplets with di�erent values of spin we will need to consider howthe basis vectors transform under the exchange of the spins in each of these di�erentmultiplets.The position-dependent basis is generated, as in the Schwinger scheme, by aunitary operator U(r). The operator is de�ned using the same map u(r) from thecon�guration space to the exchange subgroup SU(2) that was used for the Schwingerrepresentation. In chapter 3 we saw that the properties of the position-dependentbasis are independent of the particular form of this map which is chosen, providingthat it is smooth up to multiplication by a diagonal matrix of phases and has thedesired permutation propertyu(�12 r) = u(r)0@ ei� 00 e�i� 1A0@ 0 11 0 1A (4.34)For a general representation f of SU(4)U(r) = �f (u(r)) (4.35)As with the Schwinger representation the sign change of vectors in the position-dependent basis generated by U(r) determines the sign of the wavefunction underthe exchange of the particles. Consequently evaluating the exchange sign for spinvectors in a multiplet determines the statistics of wavefunctions on the position-dependent basis constructed from it.
4.5.1 De�ning a �xed exchange rotationIn the Berry-Robbins construction the exchange sign is independent of the choiceof u(r). This topological property of the position-dependent spin basis allows usto evaluate the exchange sign using a �xed exchange rotation. We can use the110



4.5. The exchange signsame exchange rotation as was used to investigate the properties of the Schwingerrepresentation, exp(�i�Ey).exp(�i�Ey) = 0BBBBBB@ 0 0 �1 00 0 0 �11 0 0 00 1 0 0
1CCCCCCA (4.36)This is an element of the SU(2) exchange subgroup of SU(4). Given any irreduciblerepresentation �f of SU(4) the element exp(�i�Ey) de�nes an exchange rotationwhich permutes the two spins.�f (exp(�i�Ey))jMi = (�1)kjMi (4.37)where jMi is a vector in the subspace W . For two particles there is no possibilityof parastatistics as both irreducible representations of the permutation group S2 areone-dimensional. To evaluate the exchange sign we want to calculatehM j�f (exp(�i�Ey))jMi = (�1)k (4.38)for spin vectors in W .In the de�ning representation of SU(4) the exchange rotation exp(�i�Ey) actson the basis vectors xj transforming them accordingly.x1 ! x3 x2 ! x4x3 ! �x1 x4 ! �x2In the tensor product representation the exchange rotation is generated by E0y,E0y = Xall permutations I 
 � � � 
 I 
 Ey 
 I 
 � � � 
 I (4.39)Using this generator our exchange rotation in the tensor product representation isexp(�i�E0y) = exp(�i�Ey)
 exp(�i�Ey)
 � � � 
 exp(�i�Ey) (4.40)We can see how this exchange rotation acts on a basis vector x0 in the representa-tion. The vectors x1 in x0 are replaced with x3's and x2's with x4's and vice versa.111



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)The operator also introduces a sign factor (�1)N3(x0)+N4(x0).Vectors in an irreducible representation f of SU(4) are generated by apply-ing the symmetry conditions of the tableau f to a vector x0 in the tensor prod-uct representation. For vectors in the subspace W we have already seen thatN1(x0) +N2(x0) = N3(x0) +N4(x0) where the total number of terms in the productis jf j. Operating on a vector with �f (exp(�i�Ey)) is equivalent to operating onthe vector x0 in the tensor product representation with exp(�i�E0y) then applyingthe symmetry conditions of the tableau f to the result. We see that vectors in thesubspace W acquire a sign (�1)jf j=2.This sign factor does not on its own determine the exchange sign. For example,consider the vector x1 
 x3 � x3 
 x1This is invariant under the operator exp(�i�E0y); however the sign factor (�1)jf j=2 is�1. The symmetry conditions recorded in the tableau f also play an important role.We can however separate the two contributions determining the a�ect of exchangingx1 $ x3 and x2 $ x4 then including the sign factor (�1)jf j=2.The sign (�1)jf j=2 can be put into a more familiar form using the conditions onf for it to contain an s
 s multiplet with ez = 0. In section 4.4.1 we had condition(4.19) jf j = 2(sT1 + sT2) = 2(2s+ 2sT2) (4.41)sT2 is an integer but s can be half integer therefore(�1)jf j = (�1)2s (4.42)This phase factor is reminiscent of the correct spin-statistics connection and formsthe �rst component in our evaluation of the exchange sign for spin vectors in a gen-eral representation of SU(4). 112



4.5. The exchange sign4.5.2 Selecting a vector jMiWe have simpli�ed the problem by considering only a single exchange rotationexp(�i�Ey). To simplify it further we will specify a particular vector jMi in eachmultiplet for which we will determine the exchange sign.Any spin vector jMi can be written as a series of spin lowering operators S1� andS2� acting on the highest weight state of the representation of SU(2)�SU(2). Thee�ect of the exchange rotation on these operators can be determined entirely fromthe commutation relations of the operators. For simplicity if we use the de�ningrepresentation of su(4) we know thatexp(�i�Ey) = 0@ 0 �II 0 1A (4.43)and the spin lowering operators areS1� = 0@ S� 00 0 1A S2� = 0@ 0 00 S� 1A (4.44)where all the matrices have been written in 2 � 2 blocks. Conjugating S1� byexp(�i�Ey) we obtain the resultexp(�i�Ey)S1�fexp(�i�Ey)g�1 = S2� (4.45)This is as expected, changing the z component of spin of one of the particles doesn'tchange the exchange sign. The exchange rotation simply swaps the particle that thespin lowering operator acts on. As our choice of z component of spin for the twoparticles doesn't e�ect the exchange sign we will choose the spins of both particlesto have maximum z component, s. This spin vector is the highest weight state ofthe representation of SU(2) � SU(2) and so is unique. By choosing this state toevaluate (4.38) we know that jMi = jMi (4.46)which further simpli�es the calculation. 113



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)4.5.3 Constructing the highest weight state of a multiplet usingYoung tableauIn sections 4.3.2 and following we constructed basis vectors in irreducible represen-tations of SU(4) and SU(2)�SU(2) using Young tableau. To construct the highestweight state of an irreducible representation of SU(2) � SU(2) we take a pair oftableau labelling the representation of SU(2)�SU(2). Then basis vectors x1 of thede�ning representation are assigned to the �rst row of the �rst tableau, x2 to thesecond row of the �rst tableau, x3 to the �rst row of the second tableau and x4 tothe second row.
1

2
3

4The tableau is symmetrised with respect to the vectors in the same row, which istrivial in this case, then antisymmetrised with respect to vectors in the same col-umn. The tableau represents the highest weight vector as it contains the maximumnumber of vectors x1 and x3, antisymmetrising columns containing the same symbolwould produce zero.For example the highest weight state of a spin-1=2 multiplet with ez = 0 can bewritten
11

2
3 3
4Applying the symmetry conditions of the two SU(2) tableau we have the linearcombination of tensor products, written

1
2

31 4
3

1
2

3 3
4

1

AS

312
1 3

4

AS

AS

AS

3 3
4

12
1

Each box in the pair of tableau corresponds to a position in the tensor product ofsix basis vectors of the de�ning representation.114



4.5. The exchange signWe want to �nd the highest weight state of an s 
 s multiplet with ez = 0in a representation f of SU(4). This involves applying the symmetry conditions fassociated with the multiplet to the highest weight vector of the representation ofSU(2) � SU(2) we de�ned previously. The symmetry conditions associated withthe multiplet are found by multiplying the pairs of tableau in the highest weightstate of the representation of SU(2) � SU(2). We will demonstrate the procedureby continuing the example above discussing more generally what is going on.In the multiplication of two tableau (2; 1) we �nd the representation (3; 2; 1)appears twice in the result with the two alternative labelling
b a

ba
aa 1

2

1

1

21

Each labelling corresponds to a di�erent multiplet. If we take the �rst labellingand apply those symmetry conditions to the highest weight state of the spin-1=2representation of SU(2)� SU(2) we �nd
3

1 1 3
32

4

2 1
1

3
3

4

1 1
2

4
3

3

2 1
1

4
3

The symmetry conditions of the tableau (3; 2; 1) labelling the irreducible represen-tation of SU(4) can now be applied to this vector. First the rows in each tableauare symmetrised 115



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)
1 1 3

32
4

1 1 3

4
3 2

1
32

4

3 1

1

4

3 1
3 2

2 1
1

3
3

4

1 1
2

4
3

3

2 1
1

4
3

3

2
1 3
3

4 11
2 3
3

4 12

4

3 1
3 1

1 3
3

12

S

41
2 3
3

4 13

4

1 2
3 1

1
1 3
3

4 2

4

1 3 2
3 1

1 3
4

123

1
1 3
4

3 2

2

2

2

2

2

2

2

S

S

S

S

S

S

S

S

S

S

S

S

SS

S

SStates are multiplied by a factor of two when two di�erent permutations of the sym-bols in the same row lead to the same labelling of the tableau. To simplify the resultall the tableau with two identical symbols in the same column which would vanishwhen the columns are antisymmetrised have been omitted.We could now antisymmetrise the tableau with respect to the symbols in thesame column however it would produce pages of tableau which can be avoided. Iftwo of the tableau above contain the same symbols in their columns then they willboth produce the same set of tableau when antisymmetrised. However the two setsof tableau could di�er by a sign. To determine this sign we can compare the twotableau and to see whether an even or odd permutation must be used to rearrangeone tableau into the other. For example the two tableau
1

4
2

1
3

3 2
1
4

1
3

3both produce the same set of tableau when antisymmetrised but with opposite signsas a single exchange of the �rst two symbols in the �rst column transforms thesecond tableau into the �rst. Using this we can collect tableau that are related by116



4.5. The exchange signcolumn permutations without antisymmetrising and writing the results out in full.In our example collecting tableau we are left with
1
2

1
3

3

4

3
2
1
3

14

1 1 3

4
3 22

1
3

4

13

S

1
3

2 4
1
3

31
3

14 2

3

3

33

33

S

S S

S S

where the full vector is still found by antisymmetrising the columns. Leaving thevector in this form is su�cient to compare pairs of vectors as we will do later. Wehave constructed a highest weight vector of the s
 s multiplets with spin-1=2 in therepresentation (321) of SU(4).With this picture of the procedure the properties of a general construction ofthe highest weight vector of a multiplet are clearer. A state created by applying�rst the (s; s) symmetry conditions of the SU(2)� SU(2) multiplet followed by thesymmetry conditions f of SU(4) is a vector in the representation f of SU(4) as itis a linear combination of basis vectors of the representation f . It is also a highestweight state of the SU(2)�SU(2) subgroup as applying a spin raising operator S1+or S2+ will produce zero, consider applying the raising operator to the state beforethe symmetry conditions f are applied. The multiplication of the two tableau givesa set of linearly independent ways of combining the symmetry conditions.
4.5.4 The e�ect of the symmetry conditions on the exchange signThe exchange rotation exp(�i�E0y) changes vectors x1 to x3, x2 to x4 and viceversa. It also multiplies a vector jMi by the sign factor (�1)2s. For the highestweight vector of an s
 s multiplet with ez = 0 exchanging the spins doesn't changethe vector. So from (4.38) the exchange sign is(�1)k = hM j�f (exp(�i�Ey))jMi (4.47)117



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)To determine the e�ect of the symmetry conditions on the exchange sign we willcompare the phase of the highest weight state of an appropriate multiplet with thestate where the vectors x1 are replaced with x3, x2 with x4 and vice versa.To make this clear we can return to our previous example. We will write thetableau recording the highest weight state of the s
 s multiplet as a column on theleft. The tableau on the right are those where the vectors have been exchanged,x1 $ x3, x2 $ x4.
1
2

1
3

3

4

1
3

2 4
1
3

4 2
3
1

1
3

2 43
13

1
31

3

14 2

3
2
1
3

14

S

24 3
13

1

3 13
1 4
2

1 3 3
14

2
2

1
3

4

13

1 1 3

4
3 2

3 1
1
3

4
2

S

S S

S

SS

S

S

SS

S

The arrows connect tableau related by column permutations of the symbols. Wecan see that the two columns record the same vector as the column permutationsthat relate the connected tableau are all even. If the permutation required in eachcase was odd the symmetry conditions would contribute an extra factor of (�1) tothe exchange sign.It is this principle of comparing the highest weight state of the multiplet tothe state where the symbols have been exchanged that we will use to evaluate thissecond contribution to the exchange sign from the symmetry conditions of the Youngtableau. 118



4.5. The exchange sign4.5.5 Evaluating the e�ect of the symmetry conditions for a generalhighest weight stateA general highest weight state is generated by a general tableau which is itselfobtained by �lling in the result of the product of two tableau s with the symbols 1to 4. From section 4.4.1 such a general tableau is
s T1

s T2 β δ
α

ε3 γ (4)
(4)

(1)
(2)

(3)
(3)

(3)f
f
f1

2 (4.48)To this tableau the symmetry conditions of the (s; s) tableau are applied permuting1's with 2's, 3's with 4's. Then the symmetry conditions of the whole tableau f areapplied to form the highest weight vector.The highest weight vectors generated in this manner span the space of highestweight vectors with ez = 0 for the given spin s. We will show that each vectorcontains the state labelled by the tableau (4.48) from which the vector is generated.This sounds obvious but will prove useful later. The identity permutation is con-tained in both sets of symmetry conditions so the question is could the same tableauappear with the opposite sign as the result of a di�erent set of permutations. This isnot possible as a sign change introduced in the (s; s) symmetry conditions must beundone with a second antisymmetric permutation to return to the original tableau.The (s; s) symmetry conditions always permute symbols in di�erent rows.If we consider our previous example applying the (s; s) symmetry conditions
1 1 3
2 3
4

...
2 1 3
1 3
4

AS

...Then applying the symmetry conditions of the tableau (3; 2; 1) we return to theoriginal tableau with no change in sign.
2 1 3
1 3
4
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2 3
4

ASAS

...119



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)The highest weight vector contains the state labelled by the tableau used to generatethe vector.The vector generated by (4.48) also includes the state labelled by the exchangedtableau where the symbols 1 and 2 have been swapped with 3 and 4,
s T1

s T2 β
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δ
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εγ

(1)
(2)

(2)
(1)

(1)

(3)
(4) (4.49)To show that this is a possible result of the application of the two sets of symmetryconditions we must show there exists a set of permutations which applied to (4.48)will produce the tableau (4.49). We can also �nd the sign of the exchanged tableauin the vector by counting the column permutations used.Starting from the tableau
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s T2 β
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δ
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εγ (4)
(4)

(1)
(2)

(3)
(3)we will assume that the identity permutation is chosen from the symmetry condi-tions of (s; s). We now split the argument for the symmetry conditions of the tableauf into two parts.If the sections � and " don't overlap (f3 � sT2) the permutations necessary toproduce (4.49) are straightforward. Starting with the row permutations the � 3'sin the �rst row must be swapped with 1's from the �rst row, this is a symmetricpermutation so there is no change in sign. The � 4's in the second row are alsoexchanged symmetrically with 2's in the second row. All the other terms must beexchanged antisymmetrically using column permutations. The � 3's in the secondrow are swapped with 1's in the top row, a sign change of (�1)� . Similarly the 
 3'sare also swapped antisymmetrically, a sign change of (�1)
 and the " 4's are swappedwith 2's in the second row, a sign change of (�1)". Combining these contributionsthe sign of the state (4.49) in the vector generated by the tableau (4.48) is(�1)�+
+" (4.50)120



4.5. The exchange signIf the sections � and " overlap the exchange of the symbols is more complexas some symbols must be moved twice. In the overlapping section we start withcolumns of
4

1
3The 4 must be swapped with a 2 but there are no 2's in the same row or column. Toaccomplish the exchange we pair this column with one of the columns of three boxesthat is not in the overlapping section. This can always be done as the maximumlength of " is sT2 the length of the section containing 2's. To exchange the symbolsin this pair of columns we proceed as follows

1
2

.....3

1
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.....

1 1
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34

.....

.....First the positions of the two columns are exchanged. Swapping symbols in thesame row does not introduce a sign change. Then using the antisymmetric columnpermutations
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3
4

2
3

4
1

3 3
1The combined permutation of both columns is even so again there is no sign change.The remaining symbols not involved in these pairs of columns are exchanged asin the �rst case. As the overlapping region has length f3 � sT2 the sign of the state(4.49) in the vector generated by the tableau (4.48) is(�1)�+
+��3(f3�sT2) (4.51)If we consider the alternative vector constructed from the tableau with one less4 in the third row we can compare the sign of the states labelled by the exchangedtableau in the two cases. To be completely transparent we are comparing the signs ofthe two di�erent states labelled by the two di�erent exchanged tableau each de�nedfrom the tableau used to construct the respective vectors. Earlier we referred to the121



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)procedure relating the tableau used to construct two such vectors as procedure A,(4.29), where A sends � ! � � 1� ! � + 1
 ! 
 + 1" ! "� 1Applying A adds one to 
 and subtracts one from � and " so(�1)(�+
+") ! (�1)(�+
+")�1 (4.52)For both cases (4.50) and (4.51) the sign of the vectors labelled by the exchangedtableau alternates between vectors generated by tableau related by A.Let us proceed for the moment as if the vectors generated by such tableau wereeigenvectors of the exchange operation exp(�i�Ey), as we will discuss below ingeneral they are not. Given a vector jMi generated by symmetry conditions (s; s)and f we have
T2

s T1

exp(-iπΕ  )y

s T1

s T2 β δ
α

ε
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(2) (4.53)where the vector is labelled by the tableau to which the symmetry conditions willbe applied to generate the vector. For an eigenvector of the exchange operation ourprevious results show that either
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(2) (4.54)if f3 � sT2 or

s T2

s T1

s T2

s T1

β δ
α

ε

(1)
(2)

(2)
(1)

(1)γ

( β + γ + ε ) (4)
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(1) (4.55)for f3 > sT2. Substituting these results into (4.53) we can evaluate equation (4.47)to obtain the exchange sign.(�1)k = 8<: (�1)2s+(�+
+�) for f3 � sT2(�1)2s+(�+
+�)�3(f3�sT2) for f3 > sT2 (4.56)122



4.5. The exchange signfor eigenvectors of the exchange operator.Using the relationship (4.52) the exchange sign (4.56) alternates between vectorsgenerated by tableau related by A. ConsequentlyNe = No Ne +No evenjNe �Noj = 1 Ne +No odd (4.57)where Ne is the number of multiplets with exchange sign of +1 and No is the numberwith exchange sign �1. Half of the spin multiplets transform with each exchangesign.This would amount to a derivation of the exchange sign if the vectors generatedby the tableau (4.48) were eigenvectors of the exchange operator, this is not neces-sarily the case. We can de�ne a set of eigenvectors of the exchange operator that willhave the correct exchange signs. However the problem is then to show that thesevectors are linearly independent. If they are linearly independent we have found thedimension of the subspaces of W with each exchange sign.Let us start instead with the vector generated by the exchanged tableau
T2

s T1

s
(3)
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α
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(1)γ
(4) (4.58)then applying the same argument that we used on the vector generated by (4.48)we see that the vector contains a state labelled by the original tableau (4.48) andthe sign of this state is the same as the sign we calculated in the reversed situation.If the sign of the vector labelled by the exchanged tableau is �1 then we can takethe linear combination of vectors generated by the two tableau
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(2) (4.59)The vector generated by acting on this combination of tableau with both sets of sym-metry conditions (s; s) and f is not zero as it must include vectors labelled by boththe original and exchanged tableau. It is also clearly an eigenvector of exp(�i�Ey)123



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)with eigenvalue (�1)(�1)2s. If there are N multiplets then this procedure de�nesN highest weight vectors half with each exchange sign. However these vectors couldbe linearly dependent.One way to prove that the exchange signs of the multiplets are determined bythe signs calculated previously would be to show that these vectors generated by(4.59) are linearly independent. If there is only a single multiplet with spin-s thenthere is nothing to prove and we have determined the exchange sign of the multi-plet. For two multiplets with spin-s the two highest weight vectors generated bytableau (4.59) will have di�erent exchange signs so they are linearly independent.Consequently all pairs of s
 s multiplets with ez = 0 will consist of one with eachexchange sign.Tableau where f3 = 0 can contain at most one multiplet with each spin s, tosee this consider applying A to such a tableau. So we have found the exchangesigns of multiplets in a representation of SU(4) labelled by a tableau with two rows.For tableau with three row if f3 � sT2 we can show that the vectors generated by(4.59) are linearly independent. Take the vector (4.59) after applying the symmetryconditions (s; s) and f it must contain a tensor product labelled by the originaltableau which has " columns
2
1

4It is impossible for tensor products in the state to be labelled by tableau with morecolumns of 1; 2; 4. To see this consider the diagram (f3 � sT2)
T1

s T2 β δ
αs

(4)

3

(1)
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(3)
(3)

γ (3) ε (4)

f
f
f

1

2Using the (s; s) symmetry conditions the 4's can only be exchanged with 3's in ahigher row which will reduce the number of 4's in the third row. Applying the sym-metry conditions f 4's in the �rst or second row must undergo a row permutationwith a 2 or 1 to increase the number of columns of three boxes containing 4's. This124



4.6. Numerical calculation of the exchange signprohibits the column created also containing both a 1 and 2 along with the 4.The same argument can be applied to the vectors generated by the tableau where1's and 3's and 2's and 4's have been exchanged to show that again the maximumnumber of 1; 2; 4 columns is ". We can now see how to show the vectors (4.59) arelinearly independent. The vector generated by tableau with the maximum numberof 4's in the third row, "max, is linearly independent of the other vectors as othervectors can not contain as many columns of 1; 2; 4. The procedure can now be it-erated to show that the vector generated by tableau with " = "max � m columnsof 1; 2; 4 is independent of the vectors generated by tableau where " = "max � k fork > m. This proves the vectors (4.59) are linearly independent for f3 < sT2 and con-sequently the exchange signs for these multiplets obey the relations (4.56) and (4.57).As yet I have been unable to verify that the vectors (4.59) are linearly inde-pendent for tableau with f3 > sT2. For these vectors it is possible to increase thenumber of columns of 1; 2; 4 but only to a limited extent. It therefore seems likelythat these vectors are linearly independent despite the di�culty in proving it.
4.6 Numerical calculation of the exchange signTo verify our results for the number of s
 s multiplets with ez = 0, (4.32), and theexchange sign of the multiplets, (4.56) and (4.57), we can calculate these propertiesnumerically for the irreducible representations of SU(4) of low dimension. To do thiswe construct projectors onto a subspace of the representation f . For a diagonalisablematrix A with eigenvalues �j the projector onto the subspace with eigenvalue �i isPi. Pi =Yj 6=i (A� �iI)(�i � �j) (4.60)We must now consider the distinguishing properties of the subspace we will projectonto. 125



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)From 4.2.1 the subspace must have equal spin eigenvalues for the two spins,s1 = s2 = s and the condition 4.2.2 restricts to a subspace with ez = 0. Of thevectors in W we will project onto a subspace of highest weight vectors of the rep-resentation of SU(2) � SU(2) where the z components of the spins are maximal,s1z = s2z = s. This subspace is spanned by eigenvectors of the exchange rotationexp(�i�Ey) with eigenvalues �1. By projecting onto the subspace with one of theseeigenvalues we can determine the number of multiplets with each exchange sign inthe representation of SU(4).The trace of a product of projection matrices is the dimension of the subspacethey project onto. Using this we multiply the matrices de�ned by the symmetryconditions of a Young tableau, which project onto a subspace with those symmetryconditions, and the projectors onto a subspace whereez = 0s1z = s2z = ss21 = s22 = s(s+ 1) (4.61)Taking the trace of this matrix we �nd the number of s
 s multiplets with ez eigen-value zero. This product of projectors is multiplied by the projector of the exchangerotation onto the subspace with exchange sign +1. Taking the trace again we �ndthe number of multiplets with this exchange sign. By comparing to the results usingthe projector of the exchange rotation onto the subspace with exchange sign �1we can verify that the remaining spin multiplets do have the alternate sign underexchange.The results of the numerical calculations made by following this scheme usingMATLAB are displayed in �gures 4.2 and 4.3. The representation of SU(4) is la-belled with the appropriate tableau and the spins of the physical multiplets in therepresentation are given along with their exchange sign.Before discussing the results it is worth commenting on some of the technicalproblems that limit such calculations. Although the representations of SU(4) ap-pear simple the size of the matrices in the tensor product representation is 4jf j. To126



4.6. Numerical calculation of the exchange signYoung Tableau Multiplet Spin Exchange Sign1 +11 �101 +1+10 �1Figure 4.2: Numerical results for representations of SU(4) labelled by Young tableauwith four boxescontinue the calculation to include the representations labelled by tableau with eightboxes would requires the manipulation of matrices of dimension 65536. There is alsoan approximately factorial increase in the number of permutation matrices that arerequired to de�ne the symmetry conditions, the order of the permutation group onjf j symbols is jf j! but not all permutations are required for each set of symmetryconditions. The combination of these problems limited calculations to jf j = 4 or6. To obtain further results the programs could be improved or computing powerincreased. In particular an e�cient algorithm for calculating the permutation ma-trices is likely to make a signi�cant impact. However even with these improvementsthe di�culty still grows rapidly with jf j and obtaining results for tableau of higherdimensions is di�cult.These results for representations of low dimension all agree with the analyticresults. Both the number and exchange sign of the multiplets are as predicted. Themost interesting case is probably the representation
127



Chapter 4. Calculation of the exchange sign for the irreducible representations ofSU(4)
Young Tableau Multiplet Spin Exchange Sign3=2 �13=2 +11=23=2 �1�11=23=2 +1+11=2 +1

1=21=2 +1�11=2 �1Figure 4.3: Numerical results for representations of SU(4) labelled by Young tableauwith six boxes
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4.6. Numerical calculation of the exchange signwhich is the lowest dimensional representation to contain two multiplets with thesame spin. We see that the numerics con�rm the prediction that the multiplets willhave di�erent exchange signs despite belonging to the same representation.
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Chapter 5
Character decomposition ofSU (2n)
The subspace of spin vectors jMi that can be used to construct the position-dependent basis corresponds to vectors in particular representations of a subgroupH of SU(2n). The representation of H from which a vector jMi is selected deter-mines the spin s of the particles and how the vector transforms under permutations.In order to assemble these physical representations to be used in the Berry-Robbinsconstruction we �rst consider the group of inner automorphisms of the maximaltorus of the exchange rotations, the Weyl group, and determine its action on spinvectors jMi. Both the Weyl group and H are formulated in terms of the semidirectproduct which is not necessary but provides a general perspective on the calculation.To �nd the number of subspaces which correspond to physical representations of thesubgroup H we use the character orthogonality relations.
5.1 Character decompositionsA representation of a group G can be restricted to elements of a subgroup H. Thisrepresentation of H will in general be reducible. We de�ne �H to be the characterof an irreducible representation of H and XG the character of the representation ofG. Then the number of irreducible representations corresponding to the character130



5.1. Character decompositions�H in the representation of G is given byNX� = 1
H X� 
�XG(h�)�H(h�) (5.1)where � parameterises the classes of H and h� is an element of H in the class �. 
�is the order of the class � and 
H the order of H. This decomposition follows fromthe character orthogonality relations, which are discussed in more detail in section2.3.The character orthogonality described in equation (5.1) assumes that the groupis �nite. However we will see that the subgroup H is continuous. For a compact Liegroup the sum becomes an integral and the character decomposition looks likeNX� = 1
H Z XG(h)�H(h)�(h) dh (5.2)where �(h) is the Haar measure on H.We have seen previously that to be used in the Berry-Robbins constructionvectors jMi in the carrier space of the representation of SU(2n) must have certainproperties;5.1.1 jMi must be an eigenvector of S2j with eigenvalue s for all n spins.5.1.1 jMi must be a null state of the z components of the exchange algebra Eijz .Only certain representations of H will correspond to vectors with these properties,we will refer to these as the physical representations of H. In order to use thecharacter orthogonality relations to �nd the number of physical representations ofH in SU(2n) we must �nd the classes and characters of H. We will also require thecharacter of the representation of SU(2n) for elements in the subgroup H. Withthese components we can integrate the product of characters over the subgroup to�nd the number of physical representations of H that an irreducible representationof SU(2n) contains. 131



Chapter 5. Character decomposition of SU(2n)5.2 The semidirect productFor SU(2n) the action of the Weyl group can be conveniently described using thesemidirect product. If we take two groups G and H where G acts on H as a groupof automorphisms �g : H  H;h 7! hg (5.3)Then the semidirect product, G n H, is the group with elements (g; h) and themultiplication law (g; h)(g0; h0) = (gg0; hh0g) (5.4)The identity element of GnH is (IG; IH). From the multiplication law (5.4) we �ndthat (g; h)�1 = (g�1; h�1g�1) (5.5)5.2.1 Classes of GnHAll elements in the class of an element (g0; h0) of GnH can be found by conjugating(g0; h0) by an element (g; h) of the group.(g; h)(g0 ; h0)(g; h)�1 = (gg0g�1; hh0gh�1gg0g�1) = (g00; h00) (5.6)Elements (g00; h00) in the class of (g0; h0) are de�ned by an element g00 of G in thesame class of G as g0. The elements h00 that can be obtained by conjugation arerestricted to those of the form hh0gh�1g00 .5.2.2 Irreducible representations of GnHFirst we determine how G acts on irreducible representations of H. Let f(D�;W�)gdenote a complete set of inequivalent unitary irreducible representations D�(H)acting on vector spaces W�. Given (D�;W�) letD�g (h) = D�(hg) (5.7)132



5.2. The semidirect productIt is easy to check that D�g (h) is a representation of H, it is irreducible and actson the space W�. Consequently (D�g ;W�) is equivalent to one of the irreduciblerepresentations (D�;W�) and to denote this instead of � we will use �g. Given gthere exists a unitary transformation��(g) :W� !W�gsuch that D�(hg) = ��(g)D�g (h)(��(g))�1 (5.8)Therefore G acts on the set of irreducible representations of H, f(D�;W�)g, bysending � to �g. The stabiliser of the representation � is a subgroup of G denotedG�. G� = fx 2 G : �x = �g (5.9)For x 2 G�, ��(x) is a unitary transformation on W�, andD�(hx) = ��(x)D�(h)(��(x))�1 (5.10)We now turn to consider an irreducible representation U of G n H acting onthe carrier space V . We can restrict the representation U to the subgroup H anddecompose V into orthogonal subspaces which transform according to an irreduciblerepresentation of H labelled by �. V =M� V� (5.11)If we select a particular subspace V� which carries the �'th representation of H withmultiplicity r then we can choose an orthonormal basis for V�,jj�iwhere j runs from 1 to d� the dimension of the representation � and � runs from 1to r. In this basis U(h)jj�i = D�kj(h)jk�i (5.12)133



Chapter 5. Character decomposition of SU(2n)so U(h) is block diagonal in this basis and each block is D�(h) an irreducible repre-sentation of H.For x 2 G� the representation U(x) leaves V� invariant.U(x)jj�i = �k�;j�(x)jk�i (5.13)The coe�cients �k�;j�(x) factorise. To see this we start by using the group multi-plication law. U(x)U(h) = U(hx)U(x) (5.14)Applying this to the state jj�i we obtain�l�;k�(x)D�kj(h)jl�i = D�lk(hx) �k�;j�(x)jl�i (5.15)Equating coe�cients and using equation (5.10) we get�l�;k�(x)D�kj(h) = ��laD�ab(h) (��bk(x))�1 �k�;j�(x) (5.16)To simplify this relation we can think of the coe�cients �k�;j� as de�ning a d�-dimensional matrix parameterised by the indices � and �,�k�;j�(x) = A(�;�)kj (x) (5.17)so A(�;�)(x) is a matrix. Writing (5.16) as a matrix equation we haveA(�;�)(x)D�(h) = ��(x)D�(h)(��(x))�1A(�;�)(x) (5.18)Solving this we obtain[(��(x))�1A(�;�)(x)]D�(h) = D�(h)[(��(x))�1A(�;�)(x)] (5.19)Schur's lemma implies that the matrix in the square brackets is a multiple of theidentity. (��(x))�1A(�;�)(x) = c��(x)I (5.20)Returning to the index notation��j;�k(x) = c��(x)��jk(x) (5.21)134



5.2. The semidirect productThis is in e�ect the de�nition of the tensor product� = �� 
 C (5.22)where C is the matrix with components c�� . This shows that the coe�cients �factorise.We are now interested in the properties of � and C. As U de�nes a representationof G we have U(x1)U(x2) = U(x1x2) (5.23)The matrices � also obey this multiplication law,�(x1)�(x2) = �(x1x2) (5.24)Factorising � using equation (5.22) we have the condition��(x1)��(x2)
 C(x1)C(x2) = ��(x1x2)
 C(x1x2) (5.25)which implies that ��(x1)��(x2) = 
(x1; x2)��(x1x2) (5.26)C(x1)C(x2) = 
�1(x1; x2)C(x1x2) (5.27)where 
(x1; x2) is a phase factor. The equations (5.26) and (5.27) resemble the def-initions of a representation of G�, they are called projective representations. Thephase factor 
(x1; x2) is the factor system of the projective representation. Theequations show that both �� and C are projective representations of G� where thefactor systems are the inverses of each other. We will see later that the appearanceof these projective representations is not signi�cant. For the representations of H inwhich we are interested the projective representations � and C will turn out to berepresentations in the usual sense, 
(x1x2) = 1.The group G� is an invariant subgroup of G so we can form the quotient groupG=G� as in section 2.2.2. Elements of this quotient group are cosets gG�. We canselect a set of coset representativesg1G�; g2G�; : : : ; gmG�135



Chapter 5. Character decomposition of SU(2n)so that the coset gaG� is labelled by a. Any g 2 G can be expressed uniquely as aproduct of a coset representative ga and an element x in G�, g = gax. The productof two coset representatives is gagb = gabxabThis is determined by the multiplication law of G=G�. For cosets of a quotient groupgaG� gbG� = gagbG� = gabG� (5.28)Using the coset representatives we can de�ne new basis vectorsjaj�i � U(ga)jj�i (5.29)We will show that the space spanned by the vectors jaj�i is invariant under U .If we take a general element of the representation U(g; h) and act on a basisvector we get U(g; h)jbk�i = U(h)U(g)U(gb)jk�i= U(g)U(gb)U(hg�1b g�1)jk�i= D�lk(hg�1b g�1)U(ggb)jl�i (5.30)Using the coset representatives ggb = gdx for a unique x in G� consequentlyU(g; h)jbk�i = D�lk(hg�1b g�1)U(gd)U(x)jl�i= D�lk(hg�1b g�1)��jl(x)c��(x)U(gd)jj�i= D�lk(hg�1b g�1)��jl(x)c��(x)jdj�i (5.31)The vector U(g; h)jbk�i is a linear combination of the vectors jdj�i so the spacespanned by these vectors is invariant under the action of the of U . As U is anirreducible representation the representation C of G� must be irreducible. The irre-ducible representations of GnH are labelled by an irreducible representation � of Hand a projective irreducible representation C of G� with a factor system conjugateto ��. 136



5.3. The Weyl groupEquation (5.31) de�nes the representation U of GnH. To simplify the structureof the equation we can write the basis vectors as tensor productsjbk�i = jbi 
 jki 
 j�i (5.32)Using matrix notation we obtainU(h) jbi 
 jki 
 j�i = jbi 
D�(hg�1b )jki 
 j�i (5.33)U(g) jbi 
 jki 
 j�i = jdi 
��(x)jki 
 C(x)j�i (5.34)where ggb = gdx. These equations also de�ne the representation U .
5.3 The Weyl groupWe will �rst de�ne the Weyl group of the exchange permutations SU(n) and thensee how this group acts on the spin vectors jMi which are used to construct theposition-dependent spin basis.5.3.1 De�nition of the Weyl groupFor a Lie group G the maximal torus T is the group generated by the Cartan sub-algebra. The normaliser of G is de�ned to beNormG(T ) = fx 2 G : xtx�1 2 T for all t 2 Tg (5.35)T is clearly an invariant subgroup of NormG(T ). We de�ne the Weyl group of G asWG = NormG(T )=T (5.36)Elements of the quotient group are cosets xT where x is an element NormG(T ).There is a natural homomorphism g from WG to the automorphisms of T ,g(xT )t = xtx�1 (5.37)As x is an element of NormG(T ) conjugating by x is an automorphism of T . TheWeyl group acts on T as automorphisms of T .137



Chapter 5. Character decomposition of SU(2n)5.3.2 The Weyl group for SU(n)For the exchange permutations SU(n) the maximal torus is the group of n � ndiagonal matrices t =0BBB@ ei�1 . . . ei�n 1CCCA (5.38)where eiP �j = 1. This is the n� 1 dimensional torus T n�1.Applying the de�nition of the normaliser (5.35) to SU(n) produces conditionson the elements x of NormSU(n)(T n�1).xt = t0x (5.39)Writing this in component form for the element xjk we getei�kxjk = ei�0jxjk (5.40)This implies that either xjk = 0 or ei�k = ei�0j . For a given j the second case canonly hold for one k the other entries in the row must all be zero. This implies thatx is a phased permutation matrix.x = 0BBB@ ei�1 . . . ei�n 1CCCA D(�) (5.41)where D(�) is the n� n de�ning representation of Sn,Djk(�) = 8<: 1 if �(j) = k0 otherwise (5.42)For the de�ning representation of the symmetric group,detD(�) = sgn(�) (5.43)so D(�) is not an element of SU(n). In order for x to have determinant unity werequire eiP �j = sgn(�). 138



5.3. The Weyl groupWe can see that T n�1 is indeed a subgroup of these matrices (5.42) obtained bytaking � to be the identity. The inverse of x isx�1 = DT (�)0BBB@ e�i�1 . . . e�i�n 1CCCA = xyso these phased permutations x are unitary. The phased permutation matrices (5.41)form the group NormSU(n)(T n�1). We will call this group of matrices �n to indi-cate the similarity with Sn. The Weyl group of the exchange angular momentum isWSU(n) = �n=T n�1, so WSU(n) is isomorphic to Sn.5.3.3 The group �nWe will see later that �n plays an important role in de�ning H and in preparationwe will investigate the structure of this group more closely. We can parameterisethe elements x of �n by the n angles � = (�1; : : : ; �n) and the element � of Sn. Anelement x is then de�ned by (�;�). If we look at the multiplication of two elementsx and x0 of �n using the factorisation (5.41) we �nd that(�;�) (�0;�0) = (��0;� + ��1(�0)) (5.44)This is the multiplication law of semidirect product de�ned in (5.4)�n = Sn n T n�1 (5.45)where Sn acts on T n�1 by permuting the angles, � 7! ��1(�).
5.3.4 Classes of �nWe can now identify the classes of �n. First we note that the inverse of an elementx is (�;�)�1 = (��1;��(�)) (5.46)139



Chapter 5. Character decomposition of SU(2n)Now if we take an element (�;�) and conjugate with any element (�;�) we obtainthe other elements in the class of (�;�).(�0;�0) = (�;�)(�;�)(�;�)�1= (����1;�+ ��1(�)� ��1��1�(�)) (5.47)The conjugate element �0 of Sn is in the same class of Sn as �. So one label for aclasses of �n is a class of Sn.We must also see how the phases � a�ect the class. If we look at the class of(I;�) we see that (�0;�0) = (I; ��1(�)) (5.48)� can be any permutation so all other elements in the class of (I;�) can be obtainedfrom a permutation of the phases �. These classes are labelled by unordered sets ofn phases f�g.If we consider the general vector of phases �0�0 = �+ ��1(�)� ��1��1�(�) (5.49)� and � are arbitrary. Applying the permutation � to both sides�(�0) = �(�) + � � ��1�(�) (5.50)As � is arbitrary let us de�ne a new arbitrary vector of phases,  = �(�).�(�0) =  + � � ��1( ) (5.51)In this general case it is clear that, unlike the classes of the identity element of Sn,the phases � are not constants of the conjugation. However for each cycle of ��1there is a constant formed from a sum of the phases. Assume ��1 contains the mcycle (ij : : : k) then taking the sum of the the i; j; : : : ; k'th phases on the right handside of equation (5.51) we �nd i + �i �  j +  j + �j � � � � +  k + �k �  i = Xl in (ij:::k) �l140



5.3. The Weyl groupWe will de�ne the sum of the phases in a cycle to be�ij:::k = Xl in (ij:::k) �l (5.52)Applying any permutation ��1 the vector of phases �0 will still contain m phaseswhose sum is �ij:::k. Setting the values of these constants determines the class of(�;�) for a given �. A class of �n is determined by r angles where r is the numberof cycles in �.The classes of Sn are labelled by a partition �, where j�j = n. In a partition� = (�1; �2; : : : ; �r) the integers �j correspond to the lengths of the cycles of elementsof Sn in the class �. We label the classes of �n with a partition � and the vector ofangles �� = (��1 ; : : : ; ��r). The condition on the phases, eiP �j = sgn(�), transfersto a condition on the parameters ��jeiPrj=1 ��j = sgn(�) (5.53)sgn(�) is constant for any permutation � in the class � as the number and length ofthe cycles is the same for all elements in �. Using the condition (5.53) the numberof parameters ��j can be reduced by one. A class of �n is therefore labelled by apartition � of n into r integers and r � 1 angles ��j for each partition.5.3.5 Representations of �n�n is the semidirect product Snn T n�1 so, applying the results of section 5.2.2, theirreducible representations of �n are labelled by irreducible representations of T n�1and projective irreducible representations of the stabiliser of Sn with respect to therepresentation of T n�1.T n�1 is the group of diagonal matrices de�ned in (5.38). The group is Abelian sothe irreducible representations are one dimensional. The irreducible representationsQ of T 1 are labelled by an integer m1 whereQm1(�1) = eim1�1 (5.54)141



Chapter 5. Character decomposition of SU(2n)An irreducible representation of T n�1 is formed from a product of these monomialrepresentations. Qm(�) = eiPmj�j (5.55)The irreducible representation Q is labelled by the vector of n integers, m =(m1; : : : ;mn). As Q is a representation of T n�1 we expect one of these integersto be redundant. For the group T n�1 we have the condition, eiP �j = 1. If we de�nea vector of integers m0 from m so thatm0 = (m1 �mn;m2 �mn; : : : ;mn�1 �mn; 0) (5.56)then we see that the representation Qm is equivalent to Qm0. The vector m labelsirreducible representations of T n�1.In the semidirect product the group Sn of automorphisms of T n�1 de�nes a mapbetween irreducible representations of T n�1. For � in SnQm(��1(�)) = eiPmj���1(j) = Q�(m)(�) (5.57)The stabiliser of Sn with respect to the representation m is de�ned as the groupSn;m = f� 2 Sn : Q�(m) = Qmg (5.58)This is the subgroup of permutations between equal integers in m. If we divide theintegers mj into sets fi; j; : : : ; kg where mi = mj = � � � = mk then Sn;m is the directproduct of the symmetric groups on these sets of symbols. A representation of thisdirect product is de�ned by choosing a representation for each of the subgroups ofpermutations amongst the sets fi; j; : : : ; kg. Representations of �n de�ned usingprojective representations of the stabiliser are not considered as they will not beneeded later.To make this clear let us take the representation of T n�1 with n = 6 labelled bythe vector of integers m = (3; 3; 3; 1; 4; 4)142



5.3. The Weyl groupThen the product of the symmetric groups S3 of permutations of f1; 2; 3g and S2 off5; 6g form the group Sn;m. An irreducible representation is labelled by two parti-tions, � of three and � of two.A representation of �n is labelled by a representationm of T n�1 and r partitions�j one for each set of equal integers. j�jj is the number of equal integers in one set.Using the results in section 5.2.2 we can construct an irreducible representation forany choice of m and �1 : : : �r.
5.3.6 The action of the Weyl group on spin vectors jMiWe will now consider the properties that make the Weyl group signi�cant in theconstruction of the position dependent spin basis. A representation �(SU(2n)) actson a complex vector space V . We have seen that spin vectors jMi used in theconstruction must be in a subspace W of V . From 5.1.2 vectors in W have zeroweight with respect to the exchange angular momentum su(n). If we take x to be anautomorphism of the maximal torus T n�1 of SU(n) the representation �(SU(2n))can be restricted to elements x of �n. For jMi in W�(x)jMi = �(xt)jMi (5.59)where t is any element of T n�1. This comes from the relation for zero weight vectors,�(t)jMi = jMi. As a consequence the representation �(xt) acting on the subspaceW is the same for any element of the coset xT and the representation �(�n) is alsoa representation of the Weyl group �n=Tn�1 of SU(n).We see that on the spin subspace W restricting the representation � to theautomorphisms of SU(n) is equivalent to de�ning a representation of WSU(n). Wenow want to investigate the properties of the Weyl group. An element of WSU(n)is a coset xT n�1. Using the decomposition (5.41) an element of the coset can be143



Chapter 5. Character decomposition of SU(2n)written 0BBB@ ei�1 . . . ei�n 1CCCA D(�) 0BBB@ ei�1 . . . ei�n 1CCCA= 0BBB@ ei(�1+���1(1)) . . . ei(�n+���1(n)) 1CCCA D(�)
The only condition on the phases � is that eiP�j = 1 so the coset consists of allelements x of �n which are constructed from the same element � of Sn. As �n is thesemidirect product of Sn and Tn�1 the multiplication law for the cosets is just thatof Sn. It follows that the Weyl group, WSU(n), is isomorphic to the permutationgroup Sn.This is just the structure that we require in order to construct the position de-pendent basis. In the group SU(2n) we need a subgroup which permutes the n spins,�n. However if the spin states jMi are to transform according to an irreducible rep-resentation of Sn then a representation of �n should also provide a representationof Sn in the spin subspace W . As any representation of �n on W descends to arepresentation ofWSU(n) spin vectors transform according to a representation of Sn.
5.4 The physical subgroup H5.4.1 The n spin subgroupThe exchange permutations, which produce WSU(n), are not the only signi�cantsubgroup used to de�ne the subspace of spinsW . From 5.1.1 and 5.1.2 spin vectorsjMi in W have zero weight with respect to su(n) and identical spins s with respectto the n spin subgroup [SU(2)]n. Matrices U in [SU(2)]n are constructed from n144



5.4. The physical subgroup H2� 2 matrices uj in SU(2), U = 0BBB@ u1 . . . un 1CCCA (5.60)These matrices clearly form a subgroup of SU(2n). Irreducible representations of[SU(2)]n are constructed by taking the tensor product of n irreducible representa-tions of SU(2) R(U) = R1(u1)
R2(u2)
 � � � 
Rn(un) (5.61)where Rj(u) is an irreducible representation of SU(2). An irreducible representa-tion R([SU(2)]n) where the n spins are the same is a tensor product of n identicalrepresentations of SU(2), R1(SU(2)) = � � � = Rn(SU(2)).If we restrict a representation of SU(2n) to the [SU(2)]n subgroup we can de-compose this reducible representation of [SU(2)]n into irreducible components and�nd the number of these representations where the n spins are identical. The spinvectors jMi used in the construction must be chosen from the subspaces spannedby these representations.
5.4.2 De�nition of HWe want to restrict a representation of SU(2n) to a subgroup generated by thepermutation operations �n and the spin subgroup [SU(2)]n. We will call this thesubgroup of physical transformations of the spin vectors, H. The vectors jMi usedin the construction of the transported spin basis will belong to particular irreduciblerepresentations of this subgroup.Given a vector jMi in the subspace W applying one of these transformationswill produce another vector in W with the same spin s. To form elements in H we145



Chapter 5. Character decomposition of SU(2n)take the product of an element of [SU(2)]n with an element of �n.0BBB@ u1 . . . un 1CCCA0BBB@ ei�1I . . . ei�nI 1CCCA D(�)
 I
= 0BBB@ ei�1u1 . . . ei�nun 1CCCAD(�)
 I (5.62)

The elements of �n de�ned in equation (5.41) are made into a subgroup of SU(2n)by taking the tensor product with the 2� 2 identity matrix as with the generatorsof the exchange angular momentum in section 3.6. Elements of H are parameterisedby u = (u1; : : : ; un), � and �. As with �n we can write down the multiplication lawfor elements of H constructed using equation (5.62).(�;�;u) (�0;�0;u0) = (��0;� + ��1(�0);u:��1(u0)) (5.63)This is also the multiplication law of a semidirect product,H = �n n [SU(2)]n (5.64)where �n acts on [SU(2)]n by permuting the elements of SU(2), u 7! ��1(u) for(�;�) 2 �n.
5.4.3 Classes of HThe classes of �n are labelled by partitions � of n into r parts and a vector of an-gles �� of length r for each partition �. In section 5.2.1 we noted that classes of asemidirect product are labelled �rstly by classes of the automorphism group. Theautomorphisms of [SU(2)]n are provided by �n so � and �� will also distinguishclasses of H.If we conjugate an element (�;�;u) of H with all elements (�;�;v) we obtain146



5.4. The physical subgroup Hthe class of (�;�;u).(�0;�0;u0) = (�;�;v) (�;�;u) (�;�;v)�1= (����1;�+ ��1(�)� ��1��1�(�);v:��1(u):��1��1�(u)) (5.65)We are interested in the extent to which u0 is determined by u. To investigate thiswe will follow the procedure used to determine the classes of �n. If we apply thepermutation � to u0 and de�ne a new arbitrary element of [SU(2)]n from vw = �(u) (5.66)Then from (5.65) we �nd the relation�(u0) = w:u:��1(w�1) (5.67)If we consider the element u1 of SU(2) it is clear that, provided 1 is not �xed by��1, we can obtain any element of SU(2) as the �rst term in �(u0). If the new �rstelement is to be w1 then let the element w�(1) be u1. The class of individual elementsuj in SU(2) is not in general maintained by conjugation.Let ��1 contain the m cycle (ijk : : : l) then the product of the elements of �(u0)in this cycle is u0iu0j : : : u0l = (wiuiw�1j )(wjujw�1k ) : : : (wlulw�1i )= wi(uiuj : : : ul)w�1i (5.68)The result is in the same class of SU(2) as the element uiuj : : : uk. To obtain u0we apply the permutation ��1. This changes the order of the elements of SU(2)however there will still be m terms whose product is in the same class of SU(2) asuiuj : : : uk. The class of SU(2) of the product of the elements of u in the same cycleof ��1 is a constant of conjugation.The class of an element u of SU(2) is labelled by a complex number � of modulusunity where the two eigenvalues of u are � and �, see section 2.7. To distinguish theclasses of H we require one eigenvalue � for each cycle in ��1. If the class of � islabelled by a partition � of n into r parts the classes of H for this choice of ��1 are147



Chapter 5. Character decomposition of SU(2n)distinguished by a vector of eigenvalues of SU(2), �� = (�1; : : : ; �r).As H is a semidirect product the classes of H are labelled by classes of �n andthe constants of conjugation �. A class of H is labelled by � a partition of n intor parts and for each � a vector of angles, ��, and a vector of eigenvalues of SU(2),��, both of length r.5.4.4 The volume element of HThe group H has an unusual structure, it consists of a �nite number of continuousparts one for each element of Sn. To sum a product of characters over the group Hinvolves a sum over the elements of Sn and an integral over the continuous param-eters of the classes for each element of Sn. For two elements � and � in the sameclass of Sn we have found that the continuous parameters labelling their classes arethe same. Therefore the sum over the elements of Sn can be reduced, as for a �nitegroup (5.1), to a sum over the classes of Sn where each class is weighted by its order.For each class of Sn there still remains an integral over the eigenvalues �� ofSU(2) and the angles ��. These integrals require a volume element for the region ofH that is to be integrated over. The angles label elements of the torus T , each setlabels a single element which are all weighted equally. So to integrate with respectto the angle ��j we use the in�nitesimal angle d��j . The condition on the angleseiP ��j = sgn(�) reduces the number of angles that we need to integrate over byone. So if their are r cycles in the class of Sn there will be r � 1 integrals.The parameters �� are eigenvalues of SU(2) and for each choice of �j there aremany matrices in SU(2) with the required eigenvalue. The eigenvalues have modulusone so we can write �j = ei�j where �j runs from zero to 2�. The in�nitesimal volumeelement for SU(2) is �j�j d�j where�j = ������ �j �j1 1 ������ (5.69)148



5.4. The physical subgroup Hsee section 2.7. Alternatively we can write�j�j = (�j � �j)(�j � �j)We see the two eigenvalues of SU(2) appear symmetrically in the volume element.We can now write the integral of a product of two characters over the groupH. To correspond to the character decompositions in (5.1) and (5.2) we will takethe character XSU(2n) to be a reducible character of a representation of SU(2n)restricted to elements of the subgroup H and �H to be an irreducible character ofH, then NX� = 1
Sn X� 
�SnA� (5.70)where A� = 1
�H Z 2�0 � � � Z 2�0 ��d��1 : : : d��r�1d�1 : : : d�rXSU(2n)(�;��; ��)�H(�;��; ��) (5.71)and �� = �1�1:�2�2 : : :�r�rThis is the form of the character orthogonality relations we will use later to de-compose the irreducible representations of SU(2n). The volume 
�H is found byintegrating the in�nitesimal volume elements as with the unitary group in theorem2.7.1. 
�H = Z 2�0 � � � Z 2�0 ��d��1 : : : d��r�1d�1 : : : d�r (5.72)Each of the r � 1 angle integrals with respect to � contribute a factor of 2�. Anintegral with respect to � produces a factor of 
SU(2) which when evaluated turnsout to be 2. 
�H = (2�)r�12r (5.73)Using these results we will be able to determine the decomposition of a representa-tion of SU(2n) given the characters of the representations of SU(2n) and H.149



Chapter 5. Character decomposition of SU(2n)5.4.5 Representations of HAs H is a semidirect product we can apply the general theory developed in section5.2.2 to �nd the irreducible representations of H.H = �n n [SU(2)]n (5.74)�n is also a semidirect product, �n = Sn n T n�1 and it is the group Sn thatde�nes the automorphisms of both T n�1 and [SU(2)]n. From this we can re�ne thede�nition of H H = Sn n (T n�1 � [SU(2)]n) (5.75)Irreducible representations of H are labelled by irreducible representations of T n�1�[SU(2)]n and projective representations of the stabiliser of the representation ofT n�1 � [SU(2)]n in Sn.An irreducible representation R of [SU(2)]n was de�ned in (5.61)R(u) = R1(u1)
R2(u2)
 � � � 
Rn(un) (5.76)Rj(u) is an irreducible representation of SU(2). The irreducible representations Qof T n�1 are labelled by the vector of integers m. From 5.55Qm(�) = eiPmj�j (5.77)Together Qm(�) and R(u) de�ne an irreducible representation of [SU(2)]n � T n�1.The group of automorphisms Sn de�nes maps between irreducible representations.For an element � of Sn R�(u) = R(��1(u)) (5.78)Similarly Q�(m)(�) = Qm(��1(�)) (5.79)These two relations de�ne maps between the irreducible representations of [SU(2)]n�T n�1. 150



5.4. The physical subgroup HThe stabiliser under Sn of the representation of [SU(2)]n � T n�1 labelled by Rand m consists of the elements of Sn which map the representation R;m into itself.Sn;R;m = f� 2 Sn : R� = R and �(m) =mg (5.80)If all the Rj in R are di�erent then clearly the stabiliser contains only the identityelement. This applies equally if all the mj in m are di�erent.We can divide the n symbols into sets fi; j; : : : ; kg where Ri = Rj = � � � = Rkand mi = mj = � � � = mk. Then if � is an element of Sn which only permutes sym-bols in the same set we know that R� = R and �(m) =m so � is in the stabiliser ofR;m. The permutation group on a set of symbols fi; j; : : : ; kg is a subgroup of Sn.We de�ne Sn;R;m to be the direct product of the permutation groups on all such setsof symbols fi; j; : : : ; kg. Then Sn;R;m is the stabiliser of the representation R;m of[SU(2)]n � T n�1. As Sn;R;m is formed from subgroups of Sn we can see that it isalso a subgroup of Sn.To clarify this let us take an example for n = 6. If we choose a representation of[SU(2)]n � T n�1 where R1 = R2 = R3 R4 = R5 = R6m1 = m2 m4 = m5 = m6Then the stabiliser is the product of the symmetric groups on the symbols f1; 2gand f4; 5; 6g. Any � in this subgroup will map the representation R;m back intoitself.If there are q sets of symbols fi; j; : : : ; kg then an irreducible representation ofSn;R;m is labelled by q partitions �1 : : : �q where each de�nes an irreducible repre-sentation of the permutation group on one set fi; j; : : : ; kg. We can use this to de�nean irreducible representation of H. The representation is labelled by a representa-tion R of [SU(2)]n, a representation m of T n�1 and a representation �1; : : : ; �q ofSn;R;m. These representations will be su�cient for our problem without consideringprojective representations of the stabiliser.151



Chapter 5. Character decomposition of SU(2n)We can use the general results for the semidirect product in section 5.2.2 tode�ne how such a representation of H acts on basis vectors of the carrier space ofthe representation. Let Sn;R;m be the stabiliser of R(u) 
 Qm(�). ��1:::�r(Sn;R;m)is an irreducible representation of the stabiliser. A vector in the representation ofH can be written jhi = jbi 
 c
 jvi 
 j�i (5.81)where c is a complex number of modulus one, the space acted on by the one dimen-sional representation Qm. jvi is a basis vector of the carrier space of R so it can bewritten as a tensor product of n basis vectors of the representations Rj,jvi = jv1i 
 jv2i 
 � � � 
 jvniThe basis vector j�i is in the carrier space of the representation ��1:::�q (Sn;R;m) andjbi is de�ned by the coset representatives �b of Sn=Sn;R;m.From equations (5.33) and (5.34) an irreducible representation of H is de�nedby (ISn ;�; I[SU(2)]n) jhi = jbi 
 eiPmj��b(j) c
 jvi 
 j�i (5.82)(ISn ; ITn�1 ;u) jhi = jbi 
 c
R(�b(u))jvi 
 j�i (5.83)(�; ITn�1 ; I[SU(2)]n) jhi = jdi 
 c
 j��1(v)i 
 ��1:::�q (�)j�i (5.84)where ��b = �d� with � 2 Sn;R;m.5.4.6 Physical representations of HUsing the semidirect product we have classi�ed the irreducible representations ofH. The vectors of SU(2n) eligible for use in the construction can belong only toparticular representations of the subgroup H. These are the representations that wewill now determine.From 5.1.1 vectors used in the construction must have equal spins s with respectto the n spin subgroup. Restricting an irreducible representation ofH, labelled by R,152



5.4. The physical subgroup Hm and �1 : : : �q, to the [SU(2)]n subgroup produces the representation R([SU(2)]n),see equation (5.83). The n spins are identical if the representations Rj(SU(2)) usedto construct R are the same. R1 = R2 = � � � = Rn (5.85)This is the �rst condition on the physical irreducible representations of H which canbe used to generate a position dependent spin basis.Spin vectors used in the construction are also zero weight vectors of the exchangeangular momentum, condition 5.1.2. This ensures that the Weyl group acts as thepermutation group on the n spins and that a representation of �n descends to theWeyl group. For this to be the case we saw that a representation �(�n) of the groupof automorphisms of the exchange angular momentum can not depend on the phases�. From equation (5.59)�((�;�)) jMi = �((�;�)) �((I; )) jMi (5.86)If we restrict a physical representation of H to the subgroup �n then the represen-tation of �n we obtain should obey the condition (5.86). From (5.82) we see thatfor this to be the case the representation of H must be constructed from the trivialrepresentation of T n�1, m1 = m2 = � � � = mn = 0 (5.87)From the two conditions (5.85) and (5.87) on the representations R and m wecan determine the stabiliser, Sn;R;m, for these physical representations of H.Sn;R;m = f� 2 Sn : R� = R and �(m) =mg = Sn (5.88)All elements of Sn map a representation R with n identical spins back into itself andmap the trivial representation of T n�1 to the trivial representation. As irreduciblerepresentations of H are labelled by representations of Sn;R;m the physical repre-sentations are labelled by an irreducible representation of Sn. A representation ofSn is labelled by a single partition �. Selecting the representation � of Sn can beseen as a choice of representation of the Weyl group which permutes the spins in153



Chapter 5. Character decomposition of SU(2n)the construction. The physical representations of H are labelled by a choice of spins, which de�nes the Rj(SU(2)) in R([SU(2)]n) and a representation � of Sn.Rewriting equations (5.82) to (5.84) for physical representations of H we obtain(ISn ;�; I[SU(2)]n) jvi 
 j�i = jvi 
 j�i (5.89)(ISn ; ITn�1 ;u) jvi 
 j�i = R(u)jvi 
 j�i (5.90)(�; ITn�1 ; I[SU(2)]n) jvi 
 j�i = j��1(v)i 
 ��(�)j�i (5.91)In de�ning the vectors in the carrier space of the representation the constant chas been removed. As we are considering only the trivial representation of T n�1 itsinclusion would serve no purpose. For the physical representations of H the quotientgroup Sn=Sn;R;m is Sn=Sn. This is a group of one element and so there is only asingle vector jbi which is also omitted. As the stabiliser Sn;R;m is now the whole ofSn we do not need to de�ne a separate element � of Sn;R;m. Equation (5.91) de�nesa representation P of the symmetric group where,P (�)jv1i 
 jv2i 
 � � � 
 jvni = jv��1(1)i 
 jv��1(2)i 
 � � � 
 jv��1(n)i (5.92)P is a representation which permutes the tensor product.Equations (5.89), (5.90) and (5.91) de�ne the physical irreducible representationsof H. In order to investigate further the properties of these representations it willbe useful to construct them explicitly. A physical representation B�s(H) isBs�(�;�;u) = [(Rs(u1)
 � � � 
Rs(un))P (�)] 
 ��(�) (5.93)It is the number and type of these representations Bs� in a representation of SU(2n)restricted to H that we want to determine. A spin-statistics connection is a rela-tionship between the spin and the representation � of Sn for particular choices ofrepresentations of SU(2n). The representation � of Sn determines how spin vectorstransform under permutations of the spins. If � is the trivial representation spinvectors are symmetric when permuted, a property which then transfers to the po-sition dependent spin basis. The alternating representation of the symmetric groupprovides antisymmetric spin vectors and other representations of Sn correspond to154



5.4. The physical subgroup Hspin vectors which produce parastatistics in the position-dependent basis.5.4.7 Characters of Bs�(H)We intend to use the character orthogonality relations to decompose a representa-tion �(SU(2n)) restricted to H. To apply the character orthogonality relations wemust know the characters of the irreducible representations of H whose presencewe want to determine in �, these are the characters of the physical representationsBs�(H).The representation Bs�(H) de�ned in (5.93) is the tensor product of a represen-tation ��(Sn) and the representation [(Rs(u1)
� � �
Rs(un))P (�)] of H. The char-acter of a representation is the trace of the representation and the trace of a tensorproduct of two matrices is the product of the traces of the two matrices. Thereforeto �nd the character of Bs�(H) it is su�cient to know the characters of the repre-sentations ��(Sn) and [(Rs(u1)
 � � � 
 Rs(un))P (�)] and take their product. �� isan irreducible representation of Sn for which the characters are well known, see sec-tion 2.8. It remains to determine the trace of matrices [(Rs(u1)
� � �
Rs(un))P (�)].As a preliminary we will state a lemma for the trace of a tensor product multipliedby P (�).Lemma 5.4.1. For any n m�m matrices U1; : : : ; UnTr[(U1 
 : : :
 Un)P (�)] = Ycycles of �Tr(U iU j : : : U l)where P (�) permutes the tensor product of n vectors and (ijk : : : l) is a cycle in �.Proof: Let U j be a matrix with elements U jpjqj . P (�) acting to the left permutescolumns in U1 
 : : : 
 Un so[(U1 
 : : :
 Un)P (�)]p1:::pn q1:::qn = U1p1q��1(1) : : : Unpnq��1(n) (5.94)Setting pi = qi and summingTr[(U1 
 : : :
 Un)P (�)] = Xq1:::qn U1q1q��1(1) : : : Unqnq��1(n) (5.95)155



Chapter 5. Character decomposition of SU(2n)Now let (ijk : : : l) be a cycle in � so we know that ��1(i) = j. Taking the terms in(5.95) with these labelsXqiqj :::ql U iqiqjU jqjqk : : : U lqlqi = Tr (U iU j : : : U l) �Using lemma 5.4.1 the characters of [(Rs(u1)
� � �
Rs(un))P (�)] are the producton the cycles of � of the characters of Rs(uijk:::l), whereuijk:::l = uiujuk : : : ul (5.96)The representation Rs(SU(2)) can also be labelled by the integer 2s, this is thenumber of boxes in the Young tableau of one row which distinguish irreduciblerepresentations of SU(2). The character of such a representation of SU(2) is givenby the Weyl character formula, section 2.7.�(Rs(u)) = ������ �2s 1�2s 1 ������������ � 1� 1 ������ = �2s � �2s�� � (5.97)� and � are the eigenvalues of u. They label the classes of SU(2).If we combine these results we can write the character �sH of the representations[(Rs(u1)
 � � � 
Rs(un))P (�)] of H,�sH(�;�;u) = Ycycles of � ������ �2s 1�2s 1 ������������ � 1� 1 ������ (5.98)where � and � are the eigenvalues of uij:::l. It follows that there is one eigenvalue � foreach cycle in �. (As the character is a class function this agrees with the de�nitionof the classes of H. A class of H is labelled by a class of Sn with one angle � andone eigenvalue � for each cycle in the class of Sn.) The characters of the physicalrepresentations Bs�(H) are then given by the product of characters�Bs�H (�;�;u) = �sH(�;�;u)��Sn(�) (5.99)156



5.5. Representations of SU(2n)The physical representations are independent of the angles � so the angles do notappear in the characters of Bs�(H). The characters are still functions of the eigen-values �� and the class � of � in Sn.
5.5 Representations of SU(2n)The irreducible representations of SU(2n) are labelled by a vector of 2n�1 integersf = (f1; : : : ; f2n�1). The integers are the lengths of the rows of the Young tableauassociated with the representation. Classes of SU(2n) are labelled by 2n complexnumbers of modulus one, � = (�1; : : : ; �2n) with the condition that their product isunity. We will often think of this condition as a de�nition of �2n

�2n = �1:�2 : : : �2n�1 (5.100)
The complex numbers � are the eigenvalues of the elements of SU(2n) and the classesof an element u of SU(2n) is determined by its diagonal matrix of eigenvalues0BBBBBB@ �1 �2 . . . �2n

1CCCCCCA = f�1; �2; : : : ; �2ng (5.101)
The order of the terms �i in � is therefore arbitrary.157



Chapter 5. Character decomposition of SU(2n)5.5.1 Characters of SU(2n)The characters of SU(2n) are a function of the class �. Using the Weyl formula wecan write the irreducible characters as a ratio of determinants
XfSU(2n)(�) =

���������������
�f1+(2n�1)1 �f1+(2n�1)2 � � � �f1+(2n�1)2n�f2+(2n�2)1 �f2+(2n�2)2 � � � �f2+(2n�2)2n... ... ...�f2n�11 �f2n�12 � � � �f2n�12n1 1 � � � 1

��������������������������� �
(2n�1)1 �(2n�1)2 � � � �(2n�1)n... ... ...�1 �2 � � � �n1 1 � � � 1

������������
(5.102)

As these ratios are awkward to write we will abbreviate the Vandemonde determi-nants by writing only the �rst row of the matrix. So for examplej�f1+(2n�1)1 : : : �f1+(2n�1)n j � ������������ �
f1+(2n�1)1 : : : �f1+(2n�1)n�f2+(2n�2)1 : : : �f2+(2n�2)n... ...�fn1 : : : �fnn

������������ (5.103)Using this notation the character of an irreducible representation of SU(2n) isXfSU(2n)(�) = j �f1+(2n�1)1 : : : �f1+(2n�1)2n jj �(2n�1)1 : : : �(2n�1)n j (5.104)5.5.2 Restricting a representation of SU(2n) to HTo write down the character of SU(2n) for an element h 2 H we must �nd theeigenvalues of h. From equation (5.62) an element in H can be factorisedh = 0BBB@ ei�1u1 . . . ei�nun 1CCCA (D(�)
 I) (5.105)When � is the identity the eigenvalues are ei�1�1; ei�1�1; : : : ; ei�n�n; ei�n�n, where �jis an eigenvalue of uj . 158



5.5. Representations of SU(2n)We take a vector v to be an eigenvector of h with eigenvalue � .0BBB@ ei�1u1 . . . ei�nun 1CCCA (D(�)
 I)v = �v (5.106)We will treat v as the direct sum of n two-dimensional vectorsv = v1 � v2 � � � � � vn (5.107)If � is not the identity let (jk : : : l) be an m cycle in �. For this cycle we obtain,from the eigenvector equation (5.106), m equationsei�juj vj = � vk... (5.108)ei�lul vl = � vjThese can be combined in order to �nd an eigenvector equation for vkei(�j+�k+���+�l)ujul : : : uk vk = �m vk (5.109)Similar equations are obtained for the other vj in the cycle. In each case the elementsu in the product have undergone a cyclic permutation. If vk is an eigenvector ofujul : : : uk, which we will call ujl:::k, with eigenvalue � then vk will also satisfy (5.109)with � = e2�ip=m ei(�j+���+�l)=m � 1m (5.110)where p is an integer. � is an m'th root of unity multiplied by a phase determinedby the sum of the phases in the cycle and an m'th root of the eigenvalue � of ujk:::l.A cyclic permutation of the u's will have the same eigenvalue � so each version ofequation (5.109) will yield the same values of � which is as we require. By settingvectors vi not in the cycle equal to the zero vector we �nd eigenvectors v whoseeigenvalues are given by the relation (5.110) for each of the cycles in �. As � is alsoan eigenvalue of ujk:::l and there are m roots of unity, each m cycle contributes 2meigenvalues. Summing over the cycles in � we obtain the 2n eigenvalues of h. Thecharacters of SU(2n) restricted to the subgroup H are then found by plugging the159



Chapter 5. Character decomposition of SU(2n)eigenvalues (5.110) of h into the Weyl character formula (5.102). The eigenvalues �and the sum of the phases in a cycle, �jk:::l = �j + �k + � � �+ �l were the parametersused in section 5.4.3 to distinguish classes of H.
5.6 The decomposition of SU(4)The two spin example is the simplest character decomposition and the calculationsin this case can be done most explicitly. The results can also be compared to thoseobtained using Young tableau.In this section we will only be considering the case where n = 2. The per-mutation group S2 contains two elements, I and (12). H contains two disjointcomponents depending on the element of S2 used to construct h in H and theclasses of H are labelled by di�erent parameters in these regions. For the class Iof S2 two parameters are eigenvalues of SU(2), �1 and �2, there is also an angle �1.The second angle �2 used to construct elements of H is determined by the condition,ei(�1+�2) = sgn(I) = 1. When � is (12) there is only one parameter, the eigenvalue �12of u1u2. The angle �12 = �1 + �2 is determined by the condition ei! = sgn(�) = �1.To sum the product of characters of SU(4) and H over the classes of H we mustintegrate over the two continuous regions and sum the results.An irreducible representation of SU(4) is labelled by f = (f1; f2; f3) and the cor-responding character is XfSU(4). From equations (5.70) and (5.71) for the characterdecomposition of a reducible representation of H the number of physical represen-tations Bs�(H) in a representation f of SU(4) is given byN fs� = 12AI + ��S2((12))2 A12 (5.111)AI = 1
I Z 2�0 Z 2�0 Z 2�0 �� d�1d�2d�1XfSU(4)(I; �I ;�I)�sH(I; �I) (5.112)A12 = 1
12 Z 2�0 X fSU(4)((12); �12;�12)�sH((12); �12)�� d�12 (5.113)160



5.6. The decomposition of SU(4)The factors of 1=2 are from the order of S2. ��S2((12)) is�1 depending on the whetherthe representation Bs�(H) is constructed from the trivial or alternating representa-tion of S2. For example to �nd the number of representations where the vectors areantisymmetric under the permutation of the two spinsA12 is subtracted from AI andthe result is divided by two. In equations (5.112) and (5.113) XfSU(4)(�; ��;��) is thecharacter of the representation f of SU(4) restricted to the classes ofH labelled by �.5.6.1 The character of SU(4) for elements of HThe eigenvalues of an element of H are given by equation (5.110). The two classesof S2 are one two-cycle, (12), or two one-cycles, I. For I the four eigenvalues areei�1�1 ei�1�1 e�i�1�2 e�i�1�2�1 and �2 are eigenvalues of u1 and u2 respectively. These eigenvalues can be sub-stituted into the Weyl formula (5.102) for the character of the representation f ofSU(4)
XfSU(4)(I;�I ; �I) =

������������ (e
i�1�1)f1+3 (ei�1�1)f1+3 (e�i�1�2)f1+3 (e�i�1�2)f1+3(ei�1�1)f2+2 (ei�1�1)f2+2 (e�i�1�2)f2+2 (e�i�1�2)f2+2(ei�1�1)f3+1 (ei�1�1)f3+1 (e�i�1�2)f3+1 (e�i�1�2)f3+11 1 1 1

������������������������ (e
i�1�1)3 (ei�1�1)3 (e�i�1�2)3 (e�i�1�2)3(ei�1�1)2 (ei�1�1)2 (e�i�1�2)2 (e�i�1�2)2(ei�1�1)1 (ei�1�1)1 (e�i�1�2)1 (e�i�1�2)11 1 1 1

������������ (5.114)If we solve equation (5.110) for the eigenvalues of H using the two cycle (12)we obtain four di�erent eigenvalues. Using the condition on the sum of the anglesei�12 = sgn((12)) = �1 to eliminate the angle �12 the eigenvalues depend only on�12, i�1=212 � i�1=212 i�1=212 � i�1=212161



Chapter 5. Character decomposition of SU(2n)Substituting these terms into the Weyl character formulae we obtain the characterof SU(4) for elements of H generated using (12).
XfSU(4)((12);�12; �12) =

������������ (i�
1=212 )f1+3 (i�1=212 )f1+3 (�i�1=212 )f1+3 (�i�1=212 )f1+3(i�1=212 )f2+2 (i�1=212 )f2+2 (�i�1=212 )f2+2 (�i�1=212 )f2+2(i�1=212 )f3+1 (i�1=212 )f3+1 (�i�1=212 )f3+1 (�i�1=212 )f3+11 1 1 1

������������������������ (i�
1=212 )3 (i�1=212 )3 (�i�1=212 )3 (�i�1=212 )3(i�1=212 )2 (i�1=212 )2 (�i�1=212 )2 (�i�1=212 )2(i�1=212 ) (i�1=212 ) (�i�1=212 ) (�i�1=212 )1 1 1 1

������������ (5.115)5.6.2 Evaluation of AIThe character �sH was de�ned in (5.98). Substituting the character formulae intothe de�nition of AI (5.112) we obtain the following integral
AI = 1
I Z 2�0 Z 2�0 Z 2�0 �� d�1d�1d�2 ������ �2s+11 �2s+111 1 ������������ �1 �11 1 ������

������ �2s+12 �2s+121 1 ������������ �2 �21 1 ������������������ (e
�i�1�1)f1+3 (e�i�1�1)f1+3 (ei�1�2)f1+3 (ei�1�2)f1+3(e�i�1�1)f2+2 (e�i�1�1)f2+2 (ei�1�2)f2+2 (ei�1�2)f2+2(e�i�1�1)f3+1 (e�i�1�1)f3+1 (ei�1�2)f3+1 (ei�1�2)f3+11 1 1 1

������������������������ (e
�i�1�1)3 (e�i�1�1)3 (ei�1�2)3 (ei�1�2)3(e�i�1�1)2 (e�i�1�1)2 (ei�1�2)2 (ei�1�2)2(e�i�1�1)1 (e�i�1�1)1 (ei�1�2)1 (ei�1�2)11 1 1 1

������������
(5.116)

where taking the complex conjugate of the character of SU(4) in (5.114) changesthe sign of �1, the e�ect on the eigenvalues � is removed by permuting columns inthe determinants. A change in the sign of the determinant in the numerator will be162



5.6. The decomposition of SU(4)cancelled by the same sign change in the denominator.To evaluate this integral we will employ the Littlewood-Richardson rule to ex-press the SU(4) character as a sum of SU(2) characters. The same technique will berepeated in the general case. The coe�cients found from the Littlewood-Richardsontheorem give the multiplicity of irreducible of representations of U(m)�U(n) in thedecomposition of an irreducible representation U(m+n) this is discussed in section2.9.3. As these coe�cients are the multiplicities of representations they can also beapplied to the decomposition of characters�fU(m+n) =X�� Y f�� ��U(m)��U(n) (5.117)f is a vector of m+ n integers labelling the irreducible representation of U(m+ n)and similarly � is a vector of m integers and � a vector of n integers labelling therespective irreducible representations of U(m) and U(n). The coe�cients Y f�� canbe evaluated using the rules for multiplying tableau.The character of U(m+n) is a function of the m+n eigenvalues �1 to �m+n. Wecan take the �rstm eigenvalues, �1 to �m, to be the eigenvalues of the U(m) subgroupand assign the remaining n eigenvalues to the U(n) subgroup. By substituting theWeyl character formulae for the characters of the unitary group into equation (5.117)we can rewrite the Littlewood-Richardson decomposition,j�f1+(m+n�1)1 : : : �f1+(m+n�1)m+n jj�(m+n�1)1 : : : �(m+n�1)m+n j =X�� Y f�� j��1+(m�1)1 : : : ��1+(m�1)m jj�(m�1)1 : : : �(m�1)m j j��1+(n�1)m+1 : : : ��1+(n�1)m+n jj�(n�1)m+1 : : : �(n�1)m+n j (5.118)The determinants in the characters have been abbreviated as de�ned in (5.103). Wenotice that as we have dealt with the decomposition of the unitary group we havenot needed to assume any relations between the eigenvalues. We can regard equation(5.118) as a factorisation of a the m+n determinants into a sum of terms involvingsmaller determinants and we will refer to this as the Littlewood-Richardson factori-sation. We should note that while using this formulae seems to imply a signi�cant163



Chapter 5. Character decomposition of SU(2n)simpli�cation in the evaluation of a large determinant, the rules for evaluating thecoe�cients Y f�� are complex. E�ectively we are transferring some of the di�cultyin evaluating the character into the evaluation of the coe�cients.We will now apply the Littlewood-Richardson factorisation (5.118) to the equa-tion for AI (5.116). We factorise the ratio of the determinants of 4� 4 matrices intoa sum of products of ratios of the determinants of 2� 2 matrices.AI = 1
I Z 2�0 Z 2�0 Z 2�0 X�� Y f����d�1d�1d�2j(e�i�1�1)�1+1 (e�i�1�1)�1+1jj(e�i�1�1) (e�i�1�1)j j(ei�1�2)�1+1 (ei�1�2)�1+1jj(ei�1�2) (ei�1�2)jj�2s+11 �2s+11 jj�1 �1j j�2s+12 �2s+12 jj�2 �2j= 1
I Z 2�0 Z 2�0 Z 2�0 X�� Y f����d�1d�1d�2 e�i(j�j�1�j�j�1)j��1+11 ��1+11 jj�1 �1j j��1+12 ��1+12 jj�2 �2j j�2s+12 �2s+12 jj�2 �2j j�2s+12 �2s+12 jj�2 �2j (5.119)j�j is the sum of the integers in �. The three integrals now separate and can besolved in turn.The integral with respect to �1 is zero unlessj�j = j�jIf AI is not zero then the phase integral gives 2� which cancels with a factor of 2�in 
I . The integrals with respect to �1 and �2 are both integrals of the product oftwo irreducible characters of SU(2) over the group SU(2). Using the orthogonalityof irreducible characters we know that these integrals will be zero unless the repre-sentations � and � are both the spin s representation of SU(2). A representation(�1; �2) of SU(2) is equivalent to the representation (�1��2; 0), this can be veri�edby looking at the Weyl character formula, therefore AI is zero unless�1 � �2 = 2s �1 � �2 = 2sIf we de�ne a vector of integers s = (s1; s2) where s1 � s2 = 2s then combining the164



5.6. The decomposition of SU(4)conditions from the three integrals AI is zero unless� = � = s (5.120)If AI is not zero the integrals with respect to �1 and �2 both produce factors of
SU(2) which cancel the remaining terms in 
I . Only one term in the sum can have� and � which obey condition (5.120) and we have the resultAI = Y fss (5.121)Y fss is found by multiplying two identical tableau s and �nding the number of tableauf in the result. This is equivalent to the result determined directly from the Youngtableau in chapter 3 for the number of spin s subspaces with zero weight with respectto Ez.5.6.3 Evaluation of A12We will apply a similar procedure to evaluate A12.A12 = 1
12 Z 2�0 j(i�1=212 )f1+3 (i�1=212 )f1+3 (�i�1=212 )f1+3 (�i�1=212 )f1+3jj(i�1=212 )3 (i�1=212 )3 (�i�1=212 )3 (�i�1=212 )3jj�2s+112 �2s+112 jj�12 �12j �� d�12 (5.122)Taking the complex conjugate of the SU(4) character permutes columns in thematrices but any change of sign in the numerator is cancelled by a similar factorfrom the denominator. We will rearrange this equation into a form where we canuse character orthogonality to evaluate the integrals. Letei = � = �1=212Changing variables in the integralA12 = 2
12 Z �0 j(i�)f1+3 (i�)f1+3 (�i�)f1+3 (�i�)f1+3jj(i�)3 (i�)3 (�i�)3 (�i�)3jj�2(2s+1) �2(2s+1)jj�2 �2j (��)0 d (5.123)The integral (5.122) with respect to � is periodic with period 2� so the integral withrespect to  is periodic with period �. Using this the integral (5.123) can be returned165



Chapter 5. Character decomposition of SU(2n)to an integral over SU(2). Applying the Littlewood-Richardson factorisation (5.118)and some algebra we obtainA12 = ijf j
12 Z 2�0 X�� Y f�� j��1+1 ��1+1jj� �j j(��)�1+1 (��)�1+1jj � � � �j j�2(2s+1)+1 �2(2s+1)+1jj� �j + j�4s+1 �4s+1jj� �j ! �� d (5.124)This is a sum of integrals over SU(2) of the product of three characters of SU(2).Solving such an integral is equivalent to decomposing the tensor product of twoirreducible representations of SU(2), the solutions of which are the Clebsch-Gordancoe�cients. C��
 = 1
 Z 2�0 ��SU(2)(�)��SU(2)(�)�
SU(2)(�) ��d� (5.125)The Clebsch-Gordan coe�cients for SU(2) are given byC��
 = 8<: 1 if j�� �j � 
 � �+ �0 otherwise (5.126)To apply this to the integral for A12 we recall that the representation � of SU(2) isequivalent to the representation (�1 ��2; 0) and de�ne the integer � to be �1 ��2.We also know from the Weyl character formula that the characters of SU(2) arereal. Solving for A12A12 = ijf jX�� Y f�� (�1)j�j [C�� (4s+2) +C� � 4s] (5.127)We have now evaluated the second integral in the formula (5.111) using the Littlewood-Richardson and Clebsch-Gordan coe�cients.Before combining the results for A12 and AI we can state another property ofA12. An irreducible representation Bs�(H) restricted to the subgroup of H con-nected to the identity is a tensor product of the representations Rs of SU(2). Thisis an irreducible representation of SU(2) � SU(2). If a representation of SU(4)contains no representation of this subgroup, ie AI = 0, then we also know it cannot contain the corresponding representation ofH. Therefore A12 is zero ifAI is zero.166



5.6. The decomposition of SU(4)The rules for multiplying Young tableau determine the coe�cient Y fss. The num-ber of boxes in a tableau f which is the product of two tableau s is twice the numberof boxes in s. So if AI is nonzerojf j = 2(s1 + s2) = 2(2s+ 2s2) (5.128)where s2 is an integer but s can be half integer. Using this we can replace the phaseijf j in (5.127) with (�1)2s.5.6.4 The number of physical representations of H in SU(4)Substituting the expressions for AI and A12 into equation (5.111) for the number ofphysical representations in the decomposition of the representation f of SU(4) we�nd thatN fs� = 12Y fss + ��S2((12))(�1)2s2 X�� Y f�� (�1)j�j [C� � (4s+2) + C�� 4s] (5.129)This gives the number of physical irreducible representations Bs�(H) when the rep-resentation of SU(4) is restricted to H.� is a partition of two and if we add the results for the two possible values of��S2((12)), which are �1, we �nd thatN fs(2) +N fs(1;1) = Y fss (5.130)The number of representations of H with spin s from which we can select spin vec-tors jMi to use in the construction is given by the number of copies of the tableauf found when two identical tableau labelling a representation of SU(2) with spin sare multiplied. This agrees with the result for the number of multiplets with spin sand zero weight with respect to Ez which we obtained directly in chapter 4.From the results in chapter 4 we also expect that approximately half the mul-tiplets available to the construction will transform according to each irreduciblerepresentation of S2. For this to agree with equation (5.129) A12 should be zerowhen AI is even and �1 for AI odd. While we have not been able to establishthis from these results we show that this is plausible. If we consider a choice of167



Chapter 5. Character decomposition of SU(2n)� = (�1; �2) and � = (�1; �2) for which Y f�� is not zero then changing � and �slightly doesn't change Y f��. For exampleY f(�1;�2)(�1;�2) = Y f(�1�1;�2)(�1+1;�2) (5.131)The sign (�1)j�j multiplying these two terms in the sum is di�erent. Consequentlythe terms cancel. Unfortunately this argument can not be applied to all shapes oftableau. Using this procedure we see that we expect most terms in A12 to canceland we will be left with a small integer although restricting this to 0 or �1 has notbeen achieved.In section 4.6 we evaluated the exchange signs of spin multiplets in the lowdimensional irreducible representations of SU(4) numerically. For these representa-tions labelled by tableau with up to six boxes we can also determine the numberof multiplets with each exchange sign using (5.129). The analytic results from thecharacter decomposition agree with those computed directly.
5.7 The decomposition of SU(6)Before tackling the general case it will be useful to see how the techniques introducedto solve the integrals in the decomposition of SU(4) are modi�ed when the symmetricgroup is less trivial. If we take n to be three we are dealing with representations ofthe classical groups SU(6) and S3. S3 is a group of six elements in three classes,the identity, three two cycles, and two three cycles. The formula for the characterdecomposition will now involve a sum over these three classes. Rewriting equations(5.70) and (5.71) for the integral of the characters over H when n = 3N fs� = 16AI + ��S3((12))36A12 + ��S3((123))26A123 (5.132)168



5.7. The decomposition of SU(6)AI = 1
I Z 2�0 � � � Z 2�0 �� d�1d�2d�3d�1d�2XfSU(6)(I; �I ;�I)�sH(I; �I) (5.133)A12 = 1
12 Z 2�0 � � � Z 2�0 �� d�12d�3d�12XfSU(6)((12); �12;�12)�sH((12); �12) (5.134)A123 = 1
123 Z 2�0 XfSU(6)((123); �123)�sH((123); �123)�� d�123 (5.135)We will solve the integrals for the A's in turn, factorising the determinants until wereach products of SU(2) characters.5.7.1 Evaluation of AIFor elements of H connected to the identity the character of the representation ofSU(6) isj(ei�1�1)f1+5 (ei�1�1)f1+5 (ei�2�2)f1+5 (ei�2�2)f1+5 (ei�3�3)f1+5 (ei�3�3)f1+5jj(ei�1�1)5 (ei�1�1)5 (ei�2�2)5 (ei�2�2)5 (ei�3�3)5 (ei�3�3)5 jThis is found by substituting the eigenvalues from (5.110) into the Weyl characterformula for SU(6). We will apply the Littlewood-Richardson factorisation (5.118)twice to the character of SU(6). Splitting the character �rst into the sum of theproducts of characters of SU(4) and SU(2). Then factorising the character of SU(4)in the product of two characters of SU(2). Substituting the characters into equation(5.133) for AIAI = 1
I Z 2�0 � � � Z 2�0 X��
 Y f��
 ��d�1d�2d�3d�1d�2ei(j�j�1+j�j�2+j
j�3) j��1+11 ��1+11 jj�1 �1j j��1+12 ��2+12 jj�2 �2j j�
1+13 �
1+13 jj�3 �3jj�2s+11 �2s+11 jj�1 �1j j�2s+12 �2s+12 jj�2 �2j j�2s+13 �2s+13 jj�3 �3j (5.136)The Littlewood-Richardson coe�cients, Y f��
 , which appear when the factorisationis applied twice are the number of tableau f in the product of the three tableau �,� and 
. 169



Chapter 5. Character decomposition of SU(2n)To solve the phase integrals we use the condition, eiP �j = 1, to eliminate �3.Then for AI to be nonzero j�j = j�j = j
j (5.137)The three �-integrals are each products of two irreducible characters of SU(2)integrated over SU(2). From character orthogonality either both characters corre-spond to the same irreducible representation of SU(2) or the integral is zero. Wehave the second condition � = � = 
 = 2s (5.138)where � is de�ned as (�1 � �2). The volume 
I is cancelled when the integral isnonzero. Combining the two conditions we �nd thatAI = Y fsss (5.139)s is de�ned as previously to be a vector (s1; s2) where s1 � s2 = 2s. It is clear thatthis result for AI will generalise to any value of n. AI is the number of tableau f inthe product of n identical tableau with spin s.5.7.2 Evaluation of A12The character of SU(6) in this case will be similar to that used in the integral for AIhowever the eigenvalues will be replaced by powers of (iei�12=2�1=212 ), (�iei�12=2�1=212 ),(e�i�12�3) and the equivalent terms with �. These eigenvalues are the solutions of(5.110) for a single two cycle. We �rst apply the Littlewood-Richardson factorisationonce to separate the terms involving �3. We rewrite (5.134) asA12 = 1
12 Z 2�0 � � � Z 2�0 X�� Y f���� d�12d�3d�12ei(j�j�12=2�j�j�3) j(i�1=212 )�1+3 (i�1=212 )�1+3 (�i�1=212 )�1+3 (�i�1=212 )�1+3jj(i�1=212 )3 (i�1=212 )3 (�i�1=212 )3 (�i�1=212 )3jj��1+13 ��2+13 jj�3 �3j j�2s+112 �2s+112 jj�12 �12j j�2s+13 �2s+13 jj�3 �3j (5.140)We can now evaluate the phase integral. A12 is nonzero only ifj�j = 2j�j (5.141)170



5.7. The decomposition of SU(6)The integral with respect to �3 is the integral of two irreducible characters of SU(2)from which we �nd the condition � = 2s (5.142)for A12 nonzero. The integral for �12 is the same as the integral for A12 in SU(4)where the representation f is replace by �. Combining these results we have deter-mined A12A12 = (�1)2sX� Y f�g X
� Y �
� (�1)j�j [C
 � (4s+2) + C
 � 4s] (5.143)We see that the solution still involves two sums over the coe�cients Y 
��. E�ectivelythe solution of A12 when n = 3 requires knowledge of all the solutions of A12 fromn = 2.5.7.3 Evaluation of A123A123 is de�ned in equation (5.135) into which we substitute the Weyl characters ofSU(6) and H. The eigenvalues of the elements of H connected to a three cycle inS3 are �1=3123 and �1=3123 multiplied by each of the cube roots of unity. We simplify theformulae for A123 by changing the variable so that�1=3123 = � = ei (5.144)By applying the the Littlewood-Richardson factorisation twice we reduce the char-acter of SU(6) into a productA123 = 1
123 Z 2�0 X��
 Y f��
 (��)0 d ei 2�3 (j�j�j
j) j��1+1 ��1+1jj� �jj��1+1 ��1+1jj� �j j�
1+1 �
1+1jj� �j j�3(2s+1) �3(2s+1)jj�3 �3j (5.145)The expresion can now be written as a product of SU(2) charactersA123 = 1
123 Z 2�0 X��
 Y f��
 �� d ei 2�3 (j�j�j
j) j�(6s+4)+1 �(6s+4)+1jj� �j + j�(6s+2)+1 �(6s+2)+1jj� �j + j�(6s)+1 �(6s)+1jj� �j !j��1+1 ��1+1jj� �j j��1+1 ��1+1jj� �j j�
1+1 �
1+1jj� �j (5.146)171



Chapter 5. Character decomposition of SU(2n)This has reduced the expression for A123 to a sum of three integrals over SU(2)of the product of four irreducible characters of SU(2). The integral of a productof four characters of SU(2) is an extension of the Clebsch-Gordan coe�cients theRacah coe�cients, see [48]. They are functions of the four integers which label theirreducible representations of SU(2) and in correspondence with the Clebsch-Gordancoe�cients we label them C��
�. Using this notation the term A123 isA123 = X��
 Y f��
 ei 2�3 (j�j�j
j) [C��
(6s+4) +C��
(6s+2) + C��
(6s)] (5.147)This is a sum of generalised Littlewood-Richardson coe�cients multiplying gener-alised Clebsch-Gordan coe�cients.From the group theory we know that A123 should be an integer but the expressioncontains the phase ei 2�3 (j�j�j
j). If a term in the sumY f��
 [C��
(6s+4) + C��
(6s+2) + C��
(6s)]is nonzero for one choice of �, � and 
 then it will be the same for any permutationof �, � and 
. In particular exchanging � and 
 the term will have the conjugatephase which ensures that the sum over all �, �, 
 is an integer.5.7.4 Physical representations of H in SU(6)The solutions of equations (5.133) to (5.135) which de�ne AI , A12 and A123 com-bined with the irreducible characters of S3 provide an analytic decomposition ofSU(6) into those representations physically relevant to the construction of a posi-tion dependent spin basis.To �nd the multiplicity of any particular physical representation of H the so-lutions for AI , A12 and A123 which depend on s are substituted into the sum overthe permutation group (5.132) where the representation � of the permutation groupenters. N fs� = 16��S3(I)AI + 36��S3((12))A12 + 26��S3((123))A123 (5.148)172



5.7. The decomposition of SU(6)The characters of the irreducible representations of S3 which appear in (5.148) arerecorded in �gure 5.1. I (12) (123)�(3)S3 1 1 1�(2;1)S3 2 0 �1�(1;1;1)S3 1 �1 1Figure 5.1: Irreducible characters of S3The total number of physical representations with spin s in the given represen-tation of SU(6) is found by summing N fs� over the three irreducible representations� of Sn. N fs = 23AI + 13A123 (5.149)We see that in this case the simple solution for AI does not determine the totalnumber of physical representations as it did for representations of SU(4). Unfor-tunately not only is the solution for SU(6) more complex but the factors that aremore di�cult to evaluate, A12 and A123, are more signi�cant.5.7.5 Example: The (2; 1) representation of SU(6) contains a spin-1=2 multiplet which exhibits parastatistics.With this example we can see how equation (5.148) is used to evaluate the exchangesign. The calculation also provides an explicit case of parastatistics in a representa-tion of SU(6). For three particles parastatistics corresponds to vectors transformingaccording to the two dimensional irreducible representation of S3. The character ofthis representation is recorded in the second row of �gure 5.1. In this example bothf and � are labelled by the partition (2; 1). From (5.148)N (2;1)1=2 (2;1) = 26AI � 26A123 (5.150)As �(2;1)S3 ((12)) is zero we avoid needing to evaluate A12.173



Chapter 5. Character decomposition of SU(2n)AI = Y (2;1)sss which is the number of ways of multiplying three tableau, consistingof a single box for spin-1=2, and obtaining the tableau (2; 1). This is the tableaumultiplication
x ywhere the labels x and y are used to distinguish the tableau. From the rules fortableau multiplication, section 2.9.1, there are two distinct results with shape (2; 1)

x
x

y
yConsequently AI is 2.To evaluate A123 using equation (5.147) we must consider all possible ways ofmultiplying three tableau and obtaining (2; 1). As the representation is simple thesecan be written out in full.

The dot denotes a tableau with no boxes. Except for the last case which we evaluatedfor AI the coe�cients Y (2;1)��
 are unity for each of these multiplication schemes. Ineach case we must also evaluate the sum of coe�cientsbC = C��
(6s+4) + C��
(6s+2) + C��
(6s) (5.151)for s = 1=2. This can be done by applying the Clebsch-Gordan formula twice.(2; 1) � 0� 0 bC = 0 (5.152)(1; 1) � (1) � 0 bC = 0 (5.153)(2)� (1) � 0 bC = 1 (5.154)(1) � (1) � (1) bC = 1 (5.155)174



5.7. The decomposition of SU(6)For the two non zero cases we must also consider the possible phase factorsei 2�3 (j�j�j
j)that can occur. For (1) � (1) � (1) as the three tableau are identical there is onlya single contribution of this type and the phase factor is unity. Using Y (2;1)(1)(1)(1) = 2the contribution to A123 from the tableau multiplication of this type isbC Y (2;1)(1)(1)(1) = 2 (5.156)For (2) � (1) � 0 the tableau are all di�erent and there are 6 such multiplicationsdepending on which tableau is assigned to which particle. In three cases the phaseis ei 2�3 and in three it is e�i 2�3 . The contribution to A123 from the tableau multipli-cations of this form is (3ei 2�3 + 3e�i 2�3 )( bC Y (2;1)(2)(1)0) = �3 (5.157)Summing the two non zero contributions A123 = �1.We can substitute the two results for AI and A123 into equation (5.150) to obtainthe �nal result N (2;1)1=2 (2;1) = 1 (5.158)The representation (2; 1) of SU(6) contains a single spin-1=2 subspace transformingaccording to the two dimensional representation of S3. If we also use our results forAI and A123 in equation (5.149) we see that this is the only physical representationof H which is contained in this irreducible representation of SU(6). Wavefunctionson a position-dependent spin basis constructed from this representation will exhibitparastatistics.While this result is interesting we should not be surprised by it. There is asimpler line of reasoning which leads to the same conclusion. If we notice thatthe representation of SU(6) is labeled by the same tableau (2; 1) which labels thetwo dimensional representation of S3 we can see that vectors generated by thesesymmetry conditions must necessarily transform according to the given irreducible175



Chapter 5. Character decomposition of SU(2n)representation of the symmetric group. While this can not be applied to larger morecomplex tableau it does at least show that for spin-1=2 there exists a representa-tion of SU(2n) where the position dependent basis transforms according to everypossible representation of Sn. All types of parastatistics can be exhibited in someposition-dependent spin basis.
5.8 The decomposition of SU(2n)Having tackled a more typical example in the decomposition of SU(6) we can ap-ply the same techniques to evaluate the coe�cients A� in the decomposition of anirreducible representation of SU(2n) into physical representations of H.The sum over H of a product of characters of H was de�ned in equation (5.70).Inserting the characters of the physical representations of H and the irreduciblerepresentation of SU(2n) into this formula we have an equation for the number ofrepresentations Bs�(H) in the decomposition of the representation of SU(2n).N fs� = 1
Sn X� 
�Sn��Sn(�)A� (5.159)where A� = 1
�H Z 2�0 � � � Z 2�0 ��d�1 : : : d�r�1d�1 : : : d�rXfSU(2n)(�;��; ��)�sH(�; ��) (5.160)� is a partition of n labelling a class of Sn and r is the number of cycles in the class�. The irreducible characters of Sn are known, as are the number of elements inthe classes of the symmetric group. Therefore the problem is to determine A� for ageneral class �. With this N fs� can be written as a sum of known coe�cients.176



5.8. The decomposition of SU(2n)5.8.1 Evaluation of A�� = (�1; �2; : : : ; �r) is a partition of n. From equation (5.110) the eigenvalues ofelements of H connected to an element of Sn in the class � are of the formei2�p=�j ei�j=�j �1=�jj = "jp or ei2�p=�j ei!j=�j �1=�jj = ~"jp (5.161)where p is an integer and �j an eigenvalue of SU(2). There are 2�j eigenvalues foreach cycle j.Using the symbols "jp and ~"jp for the eigenvalues we can write the Weyl characterformula for the representation of SU(2n).j"f1+(2n�1)11 : : : ~"f1+(2n�1)1�1 "f1+(2n�1)21 : : : ~"f1+(2n�1)2�2 : : : "f1+(2n�1)r1 : : : ~"f1+(2n�1)r�r jj"(2n�1)11 : : : ~"(2n�1)1�1 "(2n�1)21 : : : ~"(2n�1)2�2 : : : "(2n�1)r1 : : : ~"(2n�1)r�r jWith the Littlewood-Richardson theorem we split this ratio of 2n�2n determinantsinto a sum of products of determinants of size 2�j � 2�j one for each cycle in theclass �. Each of these irreducible characters of SU(2�j) is labelled by a vector ofintegers �j .XfSU(2n)(�;��; ��) =X� Y f�1:::�r Y�1:::�r j"�j1+(2�j�1)j1 : : : ~"�j1+(2�j�1)j�j jj"(2�j�1)j1 : : : ~"(2�j�1)j�j j (5.162)Using this factorisation we can rewrite equation (5.160). The phase e�i�j=�j can betaken out of the determinants labelled by �j. We obtain the integralA� = 1
�H Z 2�0 � � � Z 2�0 X� e�iPj j�j j�j �jY f�1:::�r Y�1:::�r A�j d�1 : : : d�r�1 (5.163)where A� is an integral over one of the eigenvalues � of SU(2) de�ned byA�j = Z 2�0 ��d�j j(ei2�=�j �1=�jj )�j1+(2�j�1) : : : (ei2��j=�j �1=�jj )�j1+(2�j�1)jj(ei2�=�j �1=�jj )(2�j�1) : : : (ei2��j=�j �1=�jj )(2�j�1)jj�2s+1j �2s+1j jj�j �jj (5.164)Each of the �j 'th roots of unity appear in the character labelled by �j . The char-acter labelled by �j is real as taking the complex conjugate permutes the columnsin the determinant but a sign change in the numerator would be cancelled by the177



Chapter 5. Character decomposition of SU(2n)corresponding sign from the denominator.Following this factorisation we will �rst solve the phase integrals in (5.163) then�nd a general solution of integrals of the form of (5.164). To solve the phase integralswe use the condition eiP �j = sgn(�)As all elements of Sn in the same class have the same cycle structure sgn(�) is afunction of the classes � of � in Sn. We use this to eliminate �r�r = ��1 � � � � � �r�1 (+� if � odd)Then solving the phase integrals either A� is zero or the factors � obey the conditionj�j j�j = j�rj�r for all j (5.165)If A� is nonzero the r� 1 phase integrals produce a factor of (2�)r�1 which cancelsthe similar term in 
�H and a phase (sgn(�))j�rj=�r .To solve the integral over SU(2) for A�j de�ned in (5.164) we will �rst changethe variable to simplify the notation.�1=�j = � = ei Substituting into the equation for A�jA�j = �j Z 2�=�j0 (��)0 d j(ei2�=�j�)�j1+(2�j�1) : : : (ei2��j=�j�)�j1+(2�j�1)jj(ei2�=�j�)(2�j�1) : : : (ei2��j=�j�)(2�j�1)jj��j(2s+1) ��j(2s+1)jj��j ��j j (5.166)(��)0 is the function of � that results from substituting for � in the volume element��. The integral is periodic with period 2�=�j and using this we return equation(5.166) to an integral over SU(2). We apply the Littlewood-Richardson factorisationto separate the di�erent roots of unity in the character �j.A�j = Z 2�0 X� Y �j�1:::��j (��)0 d ei 2��j �P�jl=1 lj�lj�0@ Yl=1:::�j j��l1+1 ��l1+1jj� �j 1A j��j(2s+1) ��j(2s+1)jj��j ��j j (5.167)178



5.8. The decomposition of SU(2n)where �l = (�l1; �l2) label characters of SU(2). Clearly this integral is very close toa product of �j + 1 characters of SU(2) however to reduce the integral to a sum ofknown coe�cients we must factorise (��)0. We cancel �0 and j��j ��j j and multiplytop and bottom by �. Factorising �0 we �nd that�0 = (��j � ��j ) = 0@[�j=2]Xx=1 (��j+1�2x + ��j+1�2x) (+1 if �j odd)1A�where the sum is up to [�j=2] the integer part of �j=2 and � = (���). Substitutingthis into equation (5.167) and incorporating the extra polynomial in � into thecharacter determined by s we have reduced the equation for A�j to a product ofcharacters of SU(2).A�j = Z 2�0 X� Y �j�1:::��j�� d ei 2��j �P�jl=1 lj�lj� 0@ Yl=1:::�j j��l1+1 ��l1+1jj� �j 1A0@ �jXy=1 j��j(2s)+2(y�1)+1 ��j(2s)+2(y�1)+1jj� �j 1A (5.168)This is the type of integral for which we can write down a solution using the gener-alised Clebsch-Gordan coe�cients.A�j =X� Y �j�1:::��j ei 2��j �P�jl=1 lj�lj� �jXy=1C�1:::��j (�j(2s)+2(y�1)) (5.169)In this case as previously �y is de�ned to be (�y1 � �y2).5.8.2 Results for the decomposition of SU(2n)Collecting together the results for the decomposition of SU(2n) the number of phys-ical representations labelled by s and � contained in a representation f of SU(2n)is N fs� = 1
Sn X� 
�Sn��Sn(�)A� (5.170)where � labels a class of Sn. The coe�cients A� areA� =X� (sgn(�))j�rj=�r Y f�1:::�r rYj=1A�j (5.171)179



Chapter 5. Character decomposition of SU(2n)with the condition j�jj=�j = j�rj=�r for all jand where A�j isA�j =X� Y �j�1:::��j ei 2��j �P�jl=1 lj�lj� �jXy=1C�1:::��j (�j(2s)+2(y�1)) (5.172)These results give an analytic decomposition of the representation of SU(2n) intophysical representations of H in terms of the Littlewood-Richardson and Clebsch-Gordan coe�cients and the characters of the irreducible representations of Sn.While this solution of the decomposition problem is complete to evaluate N fs� byhand we require both n and jf j to be small. This reduces the number of coe�cientsY and C required to a manageable quantity which can be calculated. For largervalues of n and jf j there do however exist algorithms for calculating the coe�cientsinvolved in the decomposition. The decomposition of any particular representationcould then be computed using these results. If we consider the direct numerical de-composition of representations of SU(2n) from chapter 4 the largest representationsfor which the calculation was possible were for n = 2 and jf j = 6. While this couldhave been improved with more e�cient algorithms the fundamental problem wasthat the dimension of the matrices grew as (2n)jf j while the number of terms in thesymmetriser also grew as approximately jf j!. Therefore the analytic results providea signi�cant computational advantage.As we saw previously for � 6= I A� is small as most contributions cancel. Wecan give a qualitative argument to show that this is inconsistent with all spin smultiplets transforming according to the same irreducible representation Sn. Eachof the integrals A� is independent of the representation � of Sn used to de�ne Bs�.Taking the set of solutions of the integrals A� we can regard them as a characterof the symmetric group which is then decomposed into irreducible representations�. With this picture we can consider what A� would look like if all multiplets withspin s were to transform according to the representation �0 of the symmetric group.180



5.8. The decomposition of SU(2n)In this case we would require A� = p��0Sn(�) (5.173)where p is an integer. Let us consider the case when the dimension of the subspacewith spin s is large, ie AI is large. In this case p will also be large. However for� 6= I equation (5.173) will not agree with the formulae (5.171) and (5.172) whereA� is small. We see that for typical representations of SU(2n) multiplets with spins will transform according to di�erent representations of Sn.
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Chapter 6
Conclusions
In chapter 3 we tasked ourselves with discovering the relation between spin and thestatistics of particles in a position-dependent spin basis constructed using a generalrepresentation of SU(2n). When we looked at the case of two particles with spin inchapter 4 we saw the �rst di�culty with constructing a general spin-statistics con-nection. The subspace W of vectors available to construct the position-dependentspin basis is formed from s 
 s multiplets with multiple values of spin. In theBerry-Robbins construction the spin-statistics connection involves the natural as-sociation between the completely symmetric representations of SU(4), labelled byYoung tableau with a single row, and the unique s
 s multiplet that the represen-tation contains. In the general case this type of relationship is not possible as �xingthe representation of SU(4) does not �x the value of spin. We did however noticethat the representation of SU(4) does determine whether the spin of the multipletswhich make up W is integer or half integer.Turning to the exchange sign we saw that in representations which contain sev-eral multiplets with the same spin s half (�1 if the number of s multiplets is odd)of the multiplets will transform according to each irreducible representation of S2.For these representations of SU(4) there can be no clear spin-statistics connectionas specifying the spin along with the representation is still insu�cient to determinethe exchange sign. 182



The decomposition of SU(2n) using the characters of the physical representa-tions of H shows that quantum mechanics on a position-dependent basis generatedby a general representation of SU(2n) admits parastatistics. We saw that, at leastfor spin-1=2, representations exist which display all types of parastatistics. An openquestion is whether there exist representations containing all forms of parastatis-tics for any spin. For any spin s and n particles position-dependent bases can beconstructed which produce either bosonic or fermionic statistics. For example therepresentation of SU(2n) labelled by a tableau with one row and 2sn boxes exhibitsbosonic or fermionic statistics depending on whether s integer or half integer. Ifinstead we select the representation of SU(2n) labelled by a tableau ((2s+ 1)n; 1n)this will also contain a single spin s multiplet. However the symmetry conditionsof the representation, speci�cally the antisymmetry introduced in the �rst column,will contribute an extra sign change under the exchange of any two particles. In thisrepresentation half integer spin particles will be bosons and those with integer spinfermions. In general representations of SU(2n) contain several multiplets with spins which transform according to di�erent irreducible representations of Sn. Typicallysuch a representation will also contain subspaces with many di�erent spins whichcan be used to generate the position-dependent basis. The full decomposition of arepresentation of SU(2n) into the physical representations of H is given in terms ofgeneralised Littlewood-Richardson and Clebsch-Gordan coe�cients.So what are the implications of these results for the spin-statistics connection?To include such a relationship what we require is a rule for selecting a position-dependent spin basis given a value of spin. If the rule is to associate a representa-tion of SU(2n) to each spin then the chosen representation of SU(2n) must containunique representations of Bs� when restricted to H. In order for a representationf of SU(2n) to �x s there can only be a single way of multiplying n tableau s andobtaining f . The simplest strategy for selecting such a set of representations is totake the set of symmetric representations.We see that the original scheme of Berry and Robbins is the most natural sys-tematic approach to choosing a set of representations with which to construct the183



Chapter 6. Conclusionsposition-dependent spin bases that is a�orded by the representations of SU(2n).This does not amount to a spin-statistics theorem, as Berry and Robbins havealready pointed out there still needs to be a convincing physical justi�cation forinsisting that spin vectors behave according only to these representations. We havehowever seen that extending the construction to general representations of SU(2n)does not in general provide equally valid schemes for establishing a spin-statisticsconnection.
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