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Con¯gurations of points

By Michael Atiyah

Department of Mathematics and Statistics, University of Edinburgh,
James Clerk Maxwell Buildings, King’s Buildings,

Edinburgh EH9 3JZ, UK

Berry & Robbins, in their discussion of the spin-statistics theorem in quantum
mechanics, were led to ask the following question. Can one construct a continu-
ous map from the con­ guration space of n distinct particles in 3-space to the ®ag
manifold of the unitary group U(n)? I shall discuss this problem and various gen-
eralizations of it. In particular, there is a version in which U(n) is replaced by an
arbitrary compact Lie group. It turns out that this can be treated using Nahm’s
equations, which are an integrable system of ordinary di¬erential equations arising
from the self-dual Yang{Mills equations. Our topological problem is therefore con-
nected with physics in two quite di¬erent ways, once at its origin and once at its
solution.

Keywords: con¯ gurations; ° ag manifolds; symmetric group

1. Introduction

In this paper I will discuss a problem in elementary geometry that has arisen from the
investigations of Berry & Robbins (1997) on the spin-statistics theorem of quantum
mechanics. The question concerns n distinct particles in Euclidean 3-space, idealized
as points, and it aims to bridge the gap to the complex wave-functions of quantum
mechanics.

Let us ­ rst recall two well-known manifolds. The ­ rst, denoted by Cn(R3), is the
con­ guration space of n distinct ordered points in R3. It is an open set of R3n,
obtained by removing the linear subspaces of codimension 3 where any two of the
points coincide. The second manifold is the famous ®ag manifold U (n)=T n, which
represents n orthonormal vectors in Cn, each ambiguous up to a phase.

Clearly, the symmetric group § n acts freely on each of these manifolds by per-
mutation of the points and vectors, respectively. The question posed by Berry &
Robbins is now simply as follows.

Does there exist, for each n, a continuous map

fn : Cn(R3) ! U (n)=T n; (1.1)

compatible with the action of the symmetric group?

The ­ rst non-trivial case is for n = 2, then

(x1; x2) ! (1
2
(x1 + x2); 1

2
(x2 ¡ x1)); xi 2 R3;

identi­ es
C3(R2) ¹= R3 £ (R3 ¡ 0);
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1376 M. Atiyah

while

U(2)=T 2 = P1(C) = S2

is the complex projective line or Riemann sphere. Observing that § 2 reverses the
sign of x2 ¡ x1, and is the antipodal map on S2, there is therefore an obvious solution

f2(x1; x2) =
x2 ¡ x1

jx2 ¡ x1j :

Remarks 1.1

(1) The case n = 2 already shows that the complex numbers enter the problem
through the natural complex structure of S2 » R3.

(2) A map fn as in (1.1) can be viewed as assigning to n point-particles in their
classical states (positions in R3) n quantum states (vectors in Cn). This is the
`bridge’ referred to above.

(3) The map f2, in addition to its compatibility with § 2, is also geometrically
de¯ned so that it is

(i) translation invariant,

(ii) compatible with rotations in R3,

(iii) scale invariant.

We could ask for similar natural properties for all fn. The only point to note is
that we should require SO(3) to act on U (n)=T n via some (projective) representation
on Cn). As will emerge later, the natural choice is the irreducible representation of
dimension n.

This question has already been considered (see Atiyah 2001), when a positive
answer was given by constructing an explicit map fn. However, this construction has
some unsatisfactory features; in particular, it involves a choice of origin and so does
not have translation invariance. One could ­ x the centre of mass as the origin, thus
preserving translation invariance, but one pays the price elsewhere when comparing
fn for di¬erent values of n.

An alternative, more sophisticated, solution can be derived using Nahm’s di¬er-
ential equation

dTi

dt
= [Tj ; Tk ];

where the Ti (i = 1; 2; 3) are n £ n matrix-valued functions of the real variable t and
(i; j; k) is a cyclic ordering of (1; 2; 3). This approach will be described in a subsequent
publication with Roger Bielawski. It also has the advantage of generalizing U(n) to
other Lie groups, and it ­ ts naturally into Lie theory. It is intriguing that Nahm’s
equation also occurs in a physical context as a method of constructing non-abelian
magnetic monopoles.

Here, however, I prefer to follow the elementary approach, indicated in Atiyah
(2001), and discuss various aspects of this.

Phil. Trans. R. Soc. Lond. A (2001)

 on September 5, 2010rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Con¯gurations of points 1377

2. A candidate map

Since any set of n linearly independent vectors in Cn can (in various ways) be orthog-
onalized, we can relax the unitarity condition in (1.1) and simply ask for a map

fn : Cn(R3) ! GL(n; C)=(C¤ )n: (2.1)

An explicit reduction from (2.1) to (1.1) is given in Atiyah (2001). The only point to
note is that we must choose our orthogonalization procedure to be compatible with
§ n, i.e. not to depend on an ordering.

Equation (2.1) is equivalent to de­ ning n points f i
n(x1; : : : ; xn) in the complex

projective space Pn¡1(C) that are linearly independent (i.e. do not lie in a proper
linear subspace).

We shall think of Pn¡1(C) as the space of polynomials of degree less than or
equal to n ¡ 1 in a complex variable t 2 S2 = P1(C). More formally, let (t0; t1)
be homogeneous coordinates for P1(C). Then Pn¡1(C) is the space of homogeneous
polynomials of degree n ¡ 1 in (t0; t1),

p(t) = a0tn¡1
1 + a1tn¡2

1 t0 + + an¡1tn¡1
0 :

Here we assume that p(t) is not identically zero and we consider it up to a scalar
factor.

Considering S2 » R3 as acted on by SO(3), the variables (t0; t1) are in the spin
representation and p is in the (projective) irreducible representation.

For convenience of calculation, we shall usually work with the inhomogeneous
coordinate

t = t1=t0;

with the understanding that t = 1 (i.e. t0 = 0) is included. We can then think of t
as the variable in the complex plane given by stereographically projecting S2 from
the north pole (t = 1).

With these preliminaries out of the way, we now proceed as follows. For each pair
i 6= j, we de­ ne

tij =
xj ¡ xi

jxj ¡ xij
;

where (x1; : : : ; xn) 2 Cn(R3). Note that this is just using the map f2 for the pair
(xi; xj). For each i, we then de­ ne the polynomial pi(t) to be the one with roots tij

(j 6= i)

pi(t) =

j 6= i

(t ¡ tij): (2.2)

We now make the following conjecture.

Conjecture 2.1. For any (x1; : : : ; xn) 2 Cn(R3), the polynomials p1; : : : ; pn

de¯ned by (2.2) are linearly independent.

If this can be proved, then putting

f i
n(x1; : : : ; xn) = pi; i = 1; : : : ; n;

we get the desired solution of (2.1), the compatibility with § n being clear from the
construction. The geometric character of our de­ nition then shows that fn has all
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1378 M. Atiyah

the same invariance properties as f2, relative to the natural action of SO(3) on the
space of polynomials.

The ­ rst crucial case that must be checked is for collinear points. But this is
easy. Taking the line joining the xi to correspond to t = 1, and ordering the xi by
increasing magnitude, we see that

p1 = 1; p2 = t; p3 = t2; : : : ; pn = tn¡1;

which are clearly independent.
Similar reasoning (see Atiyah 2001) shows that if the conjecture holds for n ¡ 1 and

if we add xn `very far away from’ x1; : : : ; xn¡1, linear independence will still hold.
But this fails to provide an inductive proof, because the argument breaks down as
xn moves closer to the other points (see Atiyah (2001) for an ingenious if inelegant
way around the problem).

The ­ rst non-trivial case is for n = 3, and since three points lie in a plane in
R3, one can give a simple geometric proof (see Atiyah 2001). Here, I shall give an
alternative algebraic computation that has proved fruitful. But ­ rst, I shall digress
to show how to de­ ne a normalized determinant.

3. The normalized determinant

The aim now is to de­ ne a natural determinant function

D(x1; : : : ; xn)

whose non-vanishing is equivalent to the required independence of p1; : : : ; pn. Since
the pi are only de­ ned up to scalar factors, we have to ­ nd some normalization
procedure to de­ ne D. It is easy to de­ ne the absolute value jDj. All we have to do
is to choose each pi to have norm 1. To preserve SO(3)-invariance, we should use
the natural invariant norm on the space of polynomials. Since the representation is
irreducible, this norm is unique, up to an overall factor (which can be ­ xed by taking
k1k = 1).

If
p(t) = a0tn¡1 + a1tn¡2 + + an¡1;

then

kpk2 =

n

j = 0

C¡1
j jaj j2; where Cj =

n ¡ 1

j
: (3.1)

This normalization of the absolute value of the determinant can be done for all
sets of polynomials. However, the phase is more delicate. In fact, if g1; : : : ; gn are any
polynomials, then

g1 ^ g2 ^ ^ gn

lies naturally in a complex line-bundle over the product of n copies of Pn¡1(C).
While this line-bundle has a natural norm, it is topologically non-trivial and so one
cannot de­ ne the phase of the determinant. However, in our case, the polynomials
p1; : : : ; pn have an additional property, namely that the root tij of pi and the root
tji of pj are related by the antipodal map, i.e.

tji = t¤
ij = ¡ (·tij)¡1:
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This additional property will enable us to de­ ne the phase of D. We proceed as
follows.

It will be convenient to use the quaternions H , an element u 2 H being written as

u = a + ib + jc + kd; a; b; c; d 2 R:

We can also identify H with C2, writing

u = t0 + jt1; t0; t1 2 C;

with the complex numbers a + ib acting by right multiplication.
The quaternions of unit norm give a 3-sphere and the right action of U(1) gives

the standard Hopf ­ bration
S1 ! S3 ! S2;

where S2 = P (C2) is the projective line of C2. The group SU (2) acts on C2 (the spin
representation) and induces the SO(3) action on S2. Multiplication on the right by
j de­ nes an anti-linear map on C2, which induces a `real structure’ ¼ on P (C2); this
is just the antipodal map of S2, since

(t0 + jt1)j = ¡ ·t1 + j·t0:

Given a point t 2 P (C2), we can lift it to a non-zero vector u 2 C2 with norm 1,
determined up to a complex number ¶ of modulus 1. For the antipodal point ¼ (t), we
will then choose the representative uj as our lift. Note that this procedure is skew-
symmetric between t and ¼ (t). If we start from s = ¼ (t) and choose a representative
v 2 C2, then vj becomes our choice over ¼ (s) = t, but since j2 = ¡ 1, (vj)j = ¡ v
gives the opposite sign. We will return to this point later.

Notice that a di¬erence choice u¶ over t leads to

u¶ j = uj·¶

over ¼ (t). It is this ambiguity in phase factors we must handle.
Nowy the roots trs of the polynomials p1; : : : ; pn occur in pairs (rs) and (sr), which

are antipodes. We now use the natural ordering and start with trs for r < s (the
positive roots in Lie theory). Choosing a lift urs 2 C2, and then the lift usr = (urs)j
over tsr = ¼ (trs), we have de­ nite choices for all the vectors urs 2 C2, which we
think of as linear forms in the variable t = t0=t1. More precisely, using the canonical
skew form on C2 (invariant under SU (2)), we identify (a0; a1) 2 C2, with the linear
form a0t1 ¡ a1t0, so that if ¬ = a1=a0 and t = t1=t0, then t ¡ ¬ is the polynomial
with root ¬ . The product

pr =

r 6= s

urs

is then a de­ nite choice for our polynomial pr. At present, we have been concentrating
on giving it a well-de­ ned phase. It has been normalized as an element of the tensor
product and this norm di¬ers from that of the polynomials (e.g. for n = 2, the
« norm squared is the sum of the squares of the symmetric and anti-symmetric
parts). For the present, we will stick with this normalization. It is SO(3)-invariant
but does not come from a Hermitian metric on the space of polynomials (it is a
Banach space norm). Later we will correct to obtain the right geometric norm.

y We adopt a di¬erent index notation now to avoid confusion with the quaternions i, j, k.
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1380 M. Atiyah

Consider now the element

D = p1 ^ p2 ^ ^ pn (3.2)

in the nth exterior power of the space Cn of polynomials of degree n ¡ 1. Since there
is a canonical isomorphism

¤ n(Cn) ¹= C; (3.3)

we can regard D as a complex number. In fact, there is a sign convention involved in
the isomorphism (3.3). We ­ x this by taking the generating element of the left-hand
side of (3.3) to be

e1 ^ e2 ^ ^ en;

where er is the properly normalized monomial

er = (Cr¡1)¡1=2tr¡1; Cr =
n ¡ 1

r
:

For n = 1, this agrees with our choice of skew-form on C2.
If we write each normalized polynomial pr as

pr =

n¡1

s = 0

arsts;

then
D = · (n) det A; (3.4)

where A is the matrix of coe¯ cients (ars) and

· (n) =
s

n ¡ 1

s

¡1=2

: (3.5)

We must now check that D is well de­ ned independently of our choice of lifts urs.
But (for r < s) changing urs to urs ¶ , with j ¶ j = 1, changes usr to usr

·¶ , while all
other linear factors are unchanged. Thus pr gets multiplied by ¶ and ps by ·¶ , so that
the element D de­ ned by (3.2) is unchanged. Thus D is a well-de­ ned function

D : Cn(R3) ! C:

Although we have used a basis (t0; t1) of C2, our construction is compatible with
the action of SO(2) and since this acts trivially on C it follows that D is invariant
under SO(3). It is also more trivially invariant under translation and scale change in
R3.

Finally, consider the action of the permutation group § n. It is su¯ cient to consider
a transposition of consecutive indices rs with s = r+1. Because of the way we de­ ned
our lifts to C2, we see that we pick up a sign change (coming from j2 = ¡ 1). But
this cancels the sign change in the determinant. Thus D is invariant under § n.

It is also interesting to consider the e¬ect of re®ection x ! ¡ x on D. This corre-
sponds to the antipodal map t ! t ¤ on S2. This is induced by multiplication by the
quaternion j on C2 and on linear forms gives

¬ + t­ ! ¡ ·­ + t·¬ : (3.6)
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For each lifting urs of trs, we can then choose the lifting

u ¤
rs = ursj

of t¤
rs. Note that this is consistent with our conventions on the relation between rs

and sr, namely (for r < s)

u ¤
sr = usrj = (ursj)j = ¡ urs = u ¤

rsj:

Hence if

pr(t) =

s6= r

urs =
n¡1

s= 0

arsts;

then, using (3.6), our re®ected polynomial is

p ¤
r(t) =

s 6= r

u ¤
rs =

n¡1

s = 0

a ¤
rsts;

where
a ¤

rs = ( ¡ 1)n¡1¡s·ar(n¡1¡s): (3.7)

Reversing the order of the columns of the matrix A (indexed by s) produces a factor

( ¡ 1)n(n¡1)=2;

and this precisely cancels out the signs occurring in (3.7). Hence we conclude that

det A ¤ = det ·A;

and so
D( ¡ x) = D(x): (3.8)

Since D(x) is invariant under SO(3), it follows from (3.8) that D(x) gets conjugated
under any re®ection. This implies that

if x1; : : : ; xn are coplanar, then D(x) is real: (3.9)

In particular, this applies to n = 3, since any three points are coplanar. In the
next section we shall give an explicit formula for D(x) when n = 3.

We now return to correct our normalizations. For each pr , let kprk be its invariant
norm. Note that, since pr has norm 1 in the tensor product, we certainly have

kprk 6 1: (3.10)

Finally, therefore, the natural geometric determinant ¢ is given by the formula

¢(x) =
D(x)
n
1 kprk

: (3.11)

As far as our conjecture is concerned, we can work equally with either D or ¢; the
non-vanishing of either is equivalent to the conjecture. The geometric signi­ cance as
a volume shows that

j¢(x)j 6 1; (3.12)

and equality holds when the xr are collinear, with the pr being orthonormal. From
(3.10), it follows trivially that

jD(x)j 6 1

but, as is easily seen, equality is never achieved.
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4. The case n = 3

Denote the three points x1, x2, x3 simply by the symbols 1, 2, 3, as in ­ gure 1, and
let ¬ , ­ , ® be the unit vectors in the directions shown, so that

¬ = t23; ­ = t31; ® = t12:

These are points on the unit circle of the complex plane and their antipodes are now
just their negatives

t32 = t ¤
23 = ¡ 1=·¬ = ¡ ¬ (since j ¬ j = 1):

Note that we have chosen coordinates so that t = 0; 1 are the directions perpendic-
ular to the plane. Denote by A, B, C the angles of the triangle ¬ ­ ® (see ­ gure 2),
so that

­ ·¬ = e2iC ; ¬ ·® = e2iB ; ® ·­ = e2iA: (4.1)

In terms of the angles X, Y , Z of the original triangle 1, 2, 3, we have

2A = Y + Z; 2B = Z + X; 2C = X + Y: (4.2)

The polynomial p1 has roots ® and ¡ ­ . If we pick

t ¡ ®p
2

as the normalized representative of ® , then we must pick

·® t + 1p
2

=
·® (t + ® )p

2

as the normalized representative over t = ¡ ® .
Proceeding cyclically (but remembering that, in the cyclic ordering 123, point 31

is `negative’), we ­ nd
p1 = 1

2
(t ¡ ® )(t + ­ )·­ ;

¡ p2 = 1
2
(t ¡ ¬ )(t + ® )·® ;

p3 = 1
2
(t ¡ ­ )(t + ¬ )·¬ :

(4.3)

Using (3.4) and noting that · (3) = 1=
p

2, we see that

D =
¡ 1p

2

¦ ·¬

8
det

1 ­ ¡ ® ¡ ­ ®
1 ® ¡ ¬ ¡ ® ¬
1 ¬ ¡ ­ ¡ ¬ ­

= ¡ ¬ ­ ®

8
p

2
( § ¬ 2­ ¡ 6 ¬ ­ ® )

=
1

8
p

2
(6 ¡ § ¬ ·­ ):

Using (4.1), this can be written in terms of the angles A, B, C,

D =
1

4
p

2
f3 ¡ § cos 2Ag

=
1

2
p

2
( § sin2 A): (4.4)
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Since A + B + C = º and (from (4.1)) A; B; C 6 1
2
º , we see that D > 0 and so the

conjecture is established for n = 3.
In fact, the simple form of (4.4) enables us to be more precise. Di¬erentiating we

see that, for a critical point of D, we have

2 § sin A cos A dA = 0

or
sin 2A dA + sin 2B dB ¡ sin 2(A + B)[dA + dB ] = 0:

This implies
sin 2A = sin 2B = sin 2C:

In the allowed region of values this implies either

(i) A = B = 1
2
º , C = 0 (or cyclic permutation), or

(ii) A = B = C = 1
3
º .

Case (i) is the collinear case, with D = 1=
p

2, while case (ii) is the equilateral case
with

D =
9

8
p

2
: (4.5)

This shows that D has a maximum for equilateral triangles and a minimum for
collinear triples (and no other critical points).
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Now let us return to the geometric determinant ¢(x). This is given, in terms of
D(x), by (3.11). In our case,

kp1k2 = 1
4
(1 + 1

2
j­ ¡ ® j2 + j­ ® j2)

= 1
4
(2 + 2 sin2 A);

so
kp1k = ( 1

2
(1 + sin2 A))1=2:

Thus, from (4.4),

¢ =
§ sin2 A

¦ (1 + sin2 A)1=2
: (4.6)

Note that, for the equilateral triangle, this gives

¢ =
18

7
p

7
:

5. Numerical computationsy

Because of the simple behaviour of D(x) for n = 3 (see (4.4)), it was reasonable
to suppose that ¢(x), which has a maximum value 1 for collinear points, would
have a minimum value for an equilateral triangle. However, Paul Sutcli¬e has done
computer calculations which show that the behaviour of ¢(x) is more complicated.
He ­ nds the minimum is the value 2

3

p
2, and this arises in the limit where x1, x2 are

­ xed and x3 tends to 1 along the perpendicular bisector of x1x2. Note that

2
p

2

3
º 0:9428;

18

7
p

7
º 0:9719;

the latter coming from the equilateral triangle. In fact, among isosceles triangles, the
equilateral triangle is a local maximum and there is one further local minimum. In
the notation of the previous section, this occurs when B = C and

cos A = 1
2
(
p

5 ¡ 1):

The value of ¢ is then ca. 0.9717, just slightly less than the value for the equilateral
case.

This peculiar behaviour arises from the fact that the invariant norm on polynomials
changes when we alter the degree (e.g. by multiplying a power of t). This is clear
from (3.1). By contrast, the tensor product norm is stable as we increase n. Adding
a new point far away from a given con­ guration leaves D unchanged (up to an
overall constant factor), whereas it decreases ¢. This suggests that, although ¢ is
geometrically more natural, we should consider working with D.

The case n = 3 gives rise to the inequality (the reverse of that for ¢)

jD(x)j > · (n): (5.1)

This suggested, perhaps optimistically, that the lower bound (5.1) (for the absolute
value) might hold for all n. This would, of course, establish our conjecture. Very

y The numerical results reported in this section were mainly obtained after the Discussion Meeting
and arose directly out of that occasion.
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recent computations by Sutcli¬e have indicated that (5.1) does indeed hold for jDj
for all n 6 20. This veri­ es the validity of our conjecture for n 6 20 and is a large
improvement on earlier calculations, which had only gone as far as n 6 4.

One might also ask for con­ gurations that give a maximum of jD(x)j, generaliz-
ing the equilateral case. Sutcli¬e ­ nds extremely interesting results, which will be
reported on elsewhere (Atiyah & Sutcli¬e 2001).

Equation (5.1) suggests that the most natural quantity to consider is · (n)¡1D(x),
i.e. the `naive determinant’ (without the normalization constant · (n) inserted
in (3.4)) of the coe¯ cients of the polynomials pr(t), each given the tensor prod-
uct norm. It would be interesting to understand the signi­ cance of this. One merit
of this normalization is that it makes our determinant multiplicative for separated
clusters.

In studying the minima and maxima of functions such as D(x) or ¢(x), it is clear
that it would be useful to make an appropriate compacti­ cation of the con­ guration
space Cn(R3). In fact, there is one that is very suitable for our purposes, and has
already been used elsewhere, e.g. in connection with knot invariants.

The non-compactness of Cn(R3) arises from two sources. In the ­ rst place, two
points xi and xj can come together and tend to coincidence. Secondly, points can
tend to in­ nity in R3. In fact, because our functions are scale invariant, these two
types of non-compactness are related. We could, for instance, scale any con­ guration
so that it lies in a ball of radius 1. To deal with points coalescing, we proceed as
follows.

In the region where xj ! xi, we add one point for each limit direction. For
example, when n = 2 and we discard the centre of mass, this would add a sphere as
an internal boundary round the origin, making our space the product of S2 with the
closed half-line r > 0.

The process is akin to `blowing up’ in algebraic geometry, except that here we
use oriented directions and get a manifold with boundary. Repeating this process,
allowing several points to coalesce along ­ xed directions (by local rescaling), we end
up with a partial compacti­ cation of C n(R3) in which a polyhedral boundary has
been added. Finally, if we factor out by translation and rescaling, we end up with
a compact space, which we might denote by C n(R3). For n = 2, it is just S2. As
this example shows, in factoring out the scale we must take the closures of the orbits
under scale multiplication. Our de­ nition of the partial compacti­ cation ensures that
the closed orbits are all disjoint.

Our polynomials pi are de­ ned by the directions tij and these are preserved under
this compacti­ cation. Hence the pi and our determinant functions extend to give
maps de­ ned on C n(R3).

6. Some generalizations

As pointed out in Atiyah (2001), our conjecture about the linear independence of
the polynomials p1; : : : ; pn has a natural generalization to Cn(H3), the con­ guration
of ordered distinct points in hyperbolic 3-space. Given two points xi; xj 2 H3, we
de­ ne tij to be the point on the 2-sphere `at 1’ along the oriented geodesic xixj .
This S2 has a natural complex structure, since the group SL(2; C) is (up to §1) the
(oriented) isometry group of H3. This means we can de­ ne the polynomials pi as
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before and conjecture their linear independence. A geometric proof of this conjecture
for n = 3 is given in Atiyah (2001).

Since there is no metric on the space of polynomials invariant under SL(2; C), we
cannot de­ ne a fully invariant determinanty. However, if we ­ x an origin in H3, the
symmetry gets reduced to SO(3) and we can then de­ ne the analogues of jD(x)j and
j¢(x)j. There seems to be no obvious way to de­ ne the complex phase because the
points tij and tji are no longer antipodal.

H3 has a constant scalar curvature. This plays no role in the de­ nition of the
polynomials pi, but it will enter in the computation of the normalized determinants.
Essentially, there is an intrinsic scale in H3 and, in an appropriate sense, we can
study the dependence of our determinants on this scale, i.e. on the curvature. As the
curvature tends to zero, we recover the Euclidean case.

Because the isometry group of H3 is SL(2; C), which is also the Lorentz group,
this suggests that it might be possible to formulate a further generalization involving
Minkowski space. We can start as follows. Let ¹ 1; : : : ; ¹ n be the n (non-intersecting)
world-lines of n moving particles (or `stars’). On each world-line ¹ i, pick an event xi.
Imagine an observer at this point of space-time. He looks out into the sky and sees
n ¡ 1 other stars on his `celestial sphere’, i.e. on the base of his backward light-cone.
These positions describe the light-rays emitted by the other stars, at some time in
their past, which happen to arrive at star i at the time (or event) xi.

In this way, we can again de­ ne points tij 2 S2, where we identify all celestial
spheres by parallel translation in Minkowski space. This gives us our polynomials
pi; : : : ; pn, and we can again ask if they are linearly independent.

It is not hard to see that the cases we have previously studied for R3 and H3 are
indeed special cases of this Minkowski situation. The Euclidean case just corresponds
to n static stars relative to a de­ nite space-time decomposition of Minkowski space.
The world-lines are just parallel to the time-axis and the points tij are essentially
the same as the ones we had before.

To get the hyperbolic space situation, we take our n stars to have arisen from a
`big bang’ and to have exploded from this past event at uniform (but not necessarily
the same) velocities. Again, since ¹ i, ¹ j now lie in a common plane, it is easy to see
that tij is the same as before.

y In fact there is an alternative approach that gives a fully invariant determinant function in the
hyperbolic case (see a forthcoming joint paper (Atiyah & Sutcli¬e 2001)).
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Since the polynomials pi can be de­ ned for any world-lines, not necessarily straight
lines, one might optimistically wonder whether linear independence held in full gener-
ality. It does so for n = 2, as a little thought will show, but it fails for n = 3, even for
world-lines that lie in a three-dimensional linear subspace R2;1 of Minkowski space
R3;1. This will be the dynamic version of the n = 3 coplanar case studied in x 4. To
avoid three-dimensional pictures, we shall just look at the spatial paths in a plane and
consider our stars to be moving along these paths. We shall give a counterexample
to the optimistic conjecture, even when the spatial paths are straight lines (but the
velocities are not uniform). We consider the ­ gure 3 (which has cyclic symmetry).
The sides 1, 2, 3 of the equilateral triangle are the paths ¹ 1, ¹ 2, ¹ 3, and, at time 0,
our stars are located at the points x1, x2, x3, one-quarter of the distance from each
vertex. The dotted lines joining the xi to the mid-points of the opposite sides of the
triangle represent the paths of the light-rays from the past of the other stars. Note
that the point 12 on line 2 is indeed in the past (t < 0) of the trajectory ¹ 2 of x2,
and similarly for all the others. Thus this diagram represents a possible scenario of
our three stars. However, the directions 12 and 13 (the light-rays reaching x1) are
in the antipodal directions. Since this holds by cyclic symmetry for the others, we
see that the three lines joining the points tijtik are concurrent (note that tij is not
the point ij in the diagram, but the direction from xi to ij). But this shows that
the three polynomials pi (which represent these lines) are linearly dependent. This
geometrical reasoning is similar to that used in the proof of the Euclidean conjecture
for n = 3 in Atiyah (2001).

A careful inspection of the diagram will show, however, that the velocities of the
stars required to produce it cannot be uniform. Consider, for instance, star x1. In its
past history light emitted at 31 and 21 reaches x3 and x2, respectively, at time t = 0.
If the velocity of x1 was uniform, say k times the velocity of light (with k < 1), then
we should have the following relations for distances:

d(31; x1) = kd(31; x3); d(21; x1) = kd(21; x2):

While the second of these is consistent with k < 1, the ­ rst is clearly not.
It might be possible to modify the geometry of this example to satisfy the relations

above (for all three points), and so be consistent with straight lines in Minkowski
space (i.e. uniform velocity). Alternatively, we might hope to prove the general con-
jecture about linear independence of the polynomials whenever ¹ 1; : : : ; ¹ n are straight
lines in Minkowski space. This would be a satisfactory generalization of the R3 and
H3 cases. It would also bring us back to physics in an interesting way, since it com-
bines relativity with spin, both ingredients of the standard proof of the spin-statistics
theorem. It is also very much in the spirit of Roger Penrose’s ideas, in which the com-
plex structure of the celestial sphere should tie in (or explain) the role of complex
numbers in quantum mechanics. Recall that we have interpreted p1; : : : ; pn as `quan-
tum states’ associated to the classical point states x1; : : : ; xn.
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