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Abstract. We propose a method for the stabilization of quantum computations (including quan-
tum state storage). The method is based on the operation of projection into SYM, the symmetric
subspace of the full state space of R redundant copies of the computer. We describe an efficient
algorithm and quantum network effecting SYM–projection and discuss the stabilizing effect of the
proposed method in the context of unitary errors generated by hardware imprecision, and nonuni-
tary errors arising from external environmental interaction. Finally, limitations of the method are
discussed.
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1. Introduction. Any realistic model of computation must conform to certain
requirements imposed not by the mathematical properties of the model but by the
laws of physics. Computations which require an exponentially increasing precision or
exponential amount of time, space, energy, or any other physical resource are normally
regarded as unrealistic and intractable.

Any actual computational process is subject to unavoidable hardware impreci-
sion and spurious interaction with the environment, whose nature is dictated by the
laws of physics. These effects introduce errors and destabilize the progress of the
desired computation. It is, therefore, essential to have some method of stabilizing the
computation against these effects.

For classical computation there is a simple and highly effective method of stabi-
lization. Each computational variable is represented redundantly using many more
physical degrees of freedom than are logically required, and a majority vote (or av-
erage) of all the copies is taken followed by resetting all the copies to the majority
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answer. This process is applied periodically during the course of the computation. If
we use R copies and the probability of producing the correct answer is 1

2 +η then it can
be shown ([1, p. 258]) that the probability E that the majority vote is wrong, is less
than exp(−η2R/6). This is an extremely resource-efficient stabilization in that the
probability of error decreases exponentially with the degree of redundancy R. Indeed,
suppose that a polynomial-time algorithm runs for M steps, each of which is correct
with probability 1

2 + η and majority voting is used after each step. The probability
that the final answer will be correct is greater than (1−E)M . Thus any desired success
probability 1 − δ may be achieved using a degree of redundancy R = O(log(M/δ)),
which is only logarithmic in the input size.

The majority vote method just described cannot be applied in the case of quan-
tum computation because quantum algorithms depend essentially on the maintenance
of coherent superpositions of different computational states at each step. The laws
of quantum mechanics forbid the identification of an unknown quantum state [17],
[18] and forbid even the cloning of an unknown state [19]. Thus the majority voting
method is inapplicable as we can neither determine the majority state nor reset the
remaining copies to that state. In this paper we propose an alternative quantum me-
chanical method of stabilization which utilizes redundancy but which has no classical
analogue. We discuss its applicability and limitations. The method was first proposed
by Deutsch [2] and a brief outline of its underlying principles was given in [3].

An alternative approach to the stabilization of classical computation involves
the use of error correcting codes [20]. A quantum mechanical generalization of this
approach was recently introduced by Shor [9] and subsequently developed in [13], [10],
[12], [11]. These methods are unrelated to those proposed in this paper and provide
an interesting supplementary method of stabilizing quantum computation.

The process of simply repeating a whole computation a sufficient number of times
may serve to stabilize it in certain circumstances. Suppose that we have a quantum
algorithm which succeeds with probability 1 − ε (where ε may increase with input
size) and suppose that we know when the computation has been successful. For
example, the computation may produce a candidate factor of an input integer which
can then be efficiently checked by trial division. For any input size L the success
probability can be amplified to any prescribed level 1− δ by repeating the algorithm
a sufficiently large number, R, of times since the probability of at least one success
in R repetitions is 1− εR → 1 as R →∞. Suppose now that the success probability
1− ε decreases with input size L as 1/poly(L). Then we can maintain any prescribed
success probability by allowing R to increase as a suitable polynomial function of
L. Thus if the original algorithm was efficient (i.e., polynomial time) then its R-fold
repetition is still efficient, i.e., the algorithm has been stabilized in an efficient manner.
(Note that Shor’s quantum factoring algorithm [7], [8] is of this type with success
probability decreasing as 1/L with input size.) However, if the success probability falls
exponentially with input size L then we must use R ∼ exp(L) to maintain any constant
level of success probability. This implies an exponential increase of physical resources
for stabilization and hence this method is inefficient in this case. Unfortunately, just
such an exponential decay of success probability appears to be a generic feature of
any physical implementation of computation, as described below.

In quantum theory, the issue of preventing information from leaking into the
environment from a system (“the computer”) is generally known as the decoherence
problem [4], [5], [6]. According to the analysis of [6], decoherence generally causes
an exponential decrease in success probability with input size L. Decoherence is
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a universal phenomenon and is expected to affect—to some extent—any physical
implementation of quantum computation whatever. Thus without some efficient form
of stabilization, quantum algorithms which are polynomially efficient in the error-free
case (like Shor’s factoring algorithm) cannot be considered polynomially efficient in
practice.

Consider any efficient computation which gives the correct result at each step
with probability 1 − ε where ε is constant. This would typically be the case if each
step of a computation consisted of the application of an elementary gate operation
having a standard tolerance of error. Then after N steps the probability of success
is (at least) (1 − ε)N ∼ exp(−εN), which again decreases exponentially with N .
Suppose that we have a stabilization scheme utilizing redundancy R which reduces
the error in each step only by a factor 1/R, i.e., ε→ ε/R (rather than the exponential
decrease given by classical majority voting). After N steps the probability of success
is now exp(−εN/R). This can be kept at any prescribed level 1 − δ by taking R =
εN/(− log(1 − δ)) which is polynomial in N and hence in the input size L. Thus an
exponentially growing error (such as results from decoherence) in a polynomial-time
computation can be efficiently stabilized by a method which reduces the error per
step only as 1/R with the degree of redundancy. Our proposed method below will
have this property.

An essential ingredient in our stabilization method is the so-called “quantum
watched pot” effect (or quantum Zeno effect) [16]. Our method will require the
repeated projection of the quantum state of R computers into the symmetric subspace
SYM, a subspace of the total state space of the R computers. This projection has a
nonzero failure probability so that (in view of the previous paragraph) the cumulative
probability of repeated successful projection may be expected to fall exponentially
with the number of projections. The quantum watched pot effect provides a means
of maintaining the cumulative probability of successful projection arbitrarily close to
unity. The basic principle is illustrated in the following simplified example. Consider
a quantum system initially in state |0〉 which rotates into |1〉 with angular frequency
ω. The state at time t (in the absence of any projections) is cosωt |0〉+ sinωt |1〉. If
we project this state into Λ0, the subspace spanned by |0〉, then the probability of
successful projection is cos2 ωt. If we project repeatedly n times between t = 0 and
t = 1, i.e., at time intervals δt = 1/n, then the probability that all projections will be
successful is (

cos2
ω

n

)n
≈
(

1− ω2

n2

)n
→ 1 as n→∞.

Thus if the projections are performed with sufficient frequency then the state may
be confined to the subspace Λ0 with arbitrarily high probability. This is the quan-
tum watched pot effect. In quantum mechanics projection operations correspond to
measurements on the system so the above may be loosely phrased as “a frequently
observed state never evolves” or “a watched pot never boils,” giving the origin of the
terminology. A similar analysis holds for Λ0 replaced by any subspace such as SYM,
and for any unitary evolution of a state initially lying in the subspace as elaborated
in section 5.

It will be useful in the following to keep in mind the simplest possible example
of the stabilization problem where the computer consists of one qubit (i.e., one two-
level system) and is performing no computation. In fact this simple model captures
the essential features of the stabilization problem for general quantum computations.
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The problem of stabilization concerns the time evolution of an “accuracy” observ-
able which has only two eigenvalues. As we shall see our analysis of error correction
depends only on such simple observables and is independent of the substance of the
computation. Thus we are addressing the problem of stabilizing the storage of an (un-
known) quantum state of one qubit against environmental interaction and (suitably
random) imprecision in the construction of the storage device.

2. The symmetric subspace. Our proposed stabilization method will exploit
redundancy but in contrast to the classical majority voting method, it will be based on
essentially quantum mechanical properties through use of the symmetric subspace of
the full state space of R copies of a physical system. Consider R copies of a quantum
system each with state space H. Denote the full state space H⊗H⊗ . . .H by HR.

Remark 1. Here we require that the R copies be distinguishable, e.g., being
located in separate regions of space so that the position coordinate provides an extra
“external” degree of freedom for distinguishability. The state space H can be thought
of as representing the “internal” degrees of freedom of each system. In our application
these are the computational degrees of freedom of each replica of the computer. In our
notation we suppress explicit mention of the distinguishing degree of freedom which
is implicitly given by the written order of component states in a tensor product state
(cf. Remark 2 below).

The symmetric subspace SYM of HR may be characterized by either of the two
following equivalent definitions.

Definition 1. SYM is the smallest subspace of HR containing all states of the
form |ψ〉 |ψ〉 . . . |ψ〉 for all |ψ〉 ∈ H.

Definition 2. SYM is the subspace of all states in HR which are symmetric
(i.e., unchanged) under the interchange of states for any pair of positions in the tensor
product. (Here we interchange only the internal degrees of freedom leaving the external
degrees fixed.)

Remark 2. To clarify the notion of symmetrization in Definition 2 note that, for
example, |φ〉 |ψ〉+ |ψ〉 |φ〉 ∈ H2 is in SYM. If we were to show the external degrees of
freedom then this state would be written |φ;x1〉 |ψ;x2〉+ |ψ;x1〉 |φ;x2〉. Consequently,
the notion of symmetrization in Definition 2 is different from bosonic symmetrization
which requires symmetrization of all degrees of freedom. For a pair of bosons the
previous state would be |φ;x1〉 |ψ;x2〉+ |ψ;x2〉 |φ;x1〉.

Definition 1 has the following interpretation. Suppose that we have R copies of
a quantum computer. If there were no errors then at each time the joint state would
have the form

|ψ〉 |ψ〉 . . . |ψ〉 ∈ HR.(1)

In the presence of errors the states will evolve differently resulting in a joint state
of the form |ψ1〉 |ψ2〉 . . . |ψR〉 or more generally a mixture of superpositions of such
states. In quantum mechanics any test (“yes/no” question) that we can apply to a
physical system must correspond to a subspace of the total state space. States of the
form (1) for all |ψ〉 ∈ H do not, by themselves, form a subspace of HR. According to
Definition 1, SYM is the smallest subspace containing all possible error-free states.
It thus corresponds to the “most probing” test we can legitimately apply, which will
be passed by all error-free states. Recall that we cannot generally identify the actual
quantum state during the course of the computation or indeed gain any information
about it without causing some irreparable disturbance [18]. The characterization
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given in Definition 2 is especially useful in treating mathematical properties of SYM
as follows.

The equivalence of the two definitions may be proved by viewing the ith compo-
nent space in the tensor product HR as the space of complex polynomials of degree
≤ n−1 in the variable xi (where n is the dimension ofH). By the fundamental theorem
of algebra any such polynomial may be factored as (xi −α1)(xi −α2) . . . (xi −αn−1).
Then Definition 1 defines the subspace of all polynomials p(x1, . . . , xR) of degree
≤ n− 1 in each variable, which arise as sums of products of functions of the form

fα(x1, x2, . . . , xR) =
R∏
i=1

(xi − α)(2)

for any α. On the other hand, Definition 2 defines the space of all symmetric polyno-
mials (of degree ≤ n − 1 in each variable). The equivalence of these subspaces then
follows easily from basic properties of the standard elementary symmetric functions
[14], which are defined as the coefficients of the powers of α in the expansion of (2).

The equivalence of the two definitions may also be understood via the following
illustrative example which gives further insight into the structure of SYM.

Example 1. Suppose that H is two-dimensional (i.e., a qubit) with computational
basis states |0〉 and |1〉. Consider triple redundancyR = 3 and the symmetric subspace
SYM ⊂ H3. Let us tentatively denote the symmetric subspaces of Definitions 1 and
2 by SYMdef1 and SYMdef2, respectively. We wish to show that these coincide.
Note first that SYMdef1 is the span of all states of the form |ψ〉 |ψ〉 |ψ〉, which are
clearly symmetrical in the sense of Definition 2. Hence, SYMdef1 ⊆ SYMdef2. For
the reverse inclusion consider a general state in H3:

|α〉 = a0 |0〉 |0〉 |0〉
+a1 |1〉 |0〉 |0〉+ a2 |0〉 |1〉 |0〉+ a3 |0〉 |0〉 |1〉(3)

+a4 |1〉 |1〉 |0〉+ a5 |1〉 |0〉 |1〉+ a6 |0〉 |1〉 |1〉
+a7 |1〉 |1〉 |1〉 .

Interchange of states for any given pair of positions (in the sense of Definition 2)
preserves the number of |0〉’s and |1〉’s in each term so that |α〉 will be in SYMdef2

if and only if a1 = a2 = a3 and a4 = a5 = a6. Indeed, we see that SYMdef2 is four
dimensional with orthonormal basis states (labelled by the number of |1〉’s):

|e0〉 = |0〉 |0〉 |0〉
|e1〉 = (|1〉 |0〉 |0〉+ |0〉 |1〉 |0〉+ |0〉 |0〉 |1〉)/

√
3(4)

|e2〉 = (|1〉 |1〉 |0〉+ |1〉 |0〉 |1〉+ |0〉 |1〉 |1〉)/
√

3

|e3〉 = |1〉 |1〉 |1〉 .

(The four normalizing factors 1,
√

3,
√

3, and 1 are square roots of the binomial coef-
ficients 3C0,

3 C1,
3 C2,

3 C3.) Now for any |ψ1〉 of the form a |0〉 + |1〉 we get directly
that

|ψ1〉 |ψ1〉 |ψ1〉 = a3 |e0〉+ a2
√

3 |e1〉+ a
√

3 |e2〉+ |e3〉 .



1546 A. BARENCO ET AL.

Repeating this for four different values of the parameter a we get the following:
a3 a2 a 1
b3 b2 b 1
c3 c2 c 1
d3 d2 d 1




|e0〉√
3 |e1〉√
3 |e2〉
|e3〉

 =


|ψ1〉 |ψ1〉 |ψ1〉
|ψ2〉 |ψ2〉 |ψ2〉
|ψ3〉 |ψ3〉 |ψ3〉
|ψ4〉 |ψ4〉 |ψ4〉

 .

Choosing a, b, c, and d so that the coefficient matrix is invertible, we see that the basis
states (4) are all in SYMdef1 so that SYMdef2 ⊆ SYMdef1. Hence, these subspaces
coincide.

From the above considerations (cf. especially (4)) we readily see that the dimen-
sion of SYM for R qubits is R+ 1 so that SYM is an exponentially small subspace
of HR (of dimension 2R). This is also true in the general case. Suppose that H has
dimension d with orthonormal basis |0〉 , |1〉 . . . |d− 1〉. Then SYM has an orthogonal
basis labelled by all possible ways of making R choices from the d basis states with
repetitions possible and the ordering of choices being irrelevant (c.f. (3) and (4)). The
solution of this combinatorial problem gives

Dimension of SYM = R+d−1Cd−1 =
1

(d− 1)!
Rd−1 +O(Rd−2),(5)

which is a polynomial in R (for fixed d). Hence, SYM is again exponentially small
inside HR of dimension dR.

3. Projection into SYM. Our proposed method of stabilization consists of
frequently repeated projection of the joint state of R computers into the symmet-
ric subspace SYM. According to the interpretation of SYM above, the error free
component of any state always lies in SYM so that upon successful projection this
component will be unchanged and part of the error will have been removed. Note,
however, that the projected state is generally not error-free since, for example, SYM
contains many states which are not of the simple product form |ψ〉 |ψ〉 . . . |ψ〉. Nev-
ertheless, the error probability will be suppressed by a factor of 1/R as discussed in
subsequent sections. Thus the method is not one of error correction but rather of
stabilization. By choosing R sufficiently large and the rate of symmetric projection
sufficiently high, the residual error at the end of a computation can, in principle, be
controlled to lie within any desired small tolerance.

The operation of projection into SYM is a computation in itself. For our sta-
bilization method to be efficient it is essential that this operation be executable effi-
ciently, i.e., in a number of steps that increases at most polynomially with L and R
where L = log2 d is the number of qubits required to hold the state of each computer
entering into the symmetrization and R is the degree of redundancy. (Also note that
R can clearly be at most a polynomial function of L in any efficient scheme.) Only
then will a nominally efficient computation remain efficient after stabilization.

We next describe an algorithm for projecting into SYM and show that it is
efficient in the above sense. Consider first a product state |Ψ〉 = |a1〉 |a2〉 . . . |aR〉 ∈
HR. To project |Ψ〉 into SYM we carry out the following steps.

Step 1. Introduce an ancilla in a standard state |0〉 with a state space A of at
least R! dimensions.

Step 2. Make an equal amplitude superposition of the ancilla

U : |0〉 → 1√
R!

R!−1∑
i=0

|i〉 .
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Step 3. Carry out the following computation: if the ancilla state is |i〉 then per-
form the ith permutation σi of the component states of |a1〉 |a2〉 . . . |aR〉

|a1〉 |a2〉 . . . |aR〉 |i〉 →
∣∣aσi(1)〉 ∣∣aσi(2)〉 . . . ∣∣aσi(R)

〉 |i〉 .
This results in the entangled state∑

i

∣∣aσi(1)〉 ∣∣aσi(2)〉 . . . ∣∣aσi(R)

〉 |i〉 ∈ HR ⊗A.
Step 4. Apply the reverse computation U−1 of step 2 to the ancilla. The resulting

state may be written

|Υ〉 =
∑
i

|ξi〉 |i〉 ∈ HR ⊗A.

Since U transforms |0〉 to each |i〉 with equal amplitude it follows that U−1

transforms each |i〉 back to |0〉 with equal amplitude. Hence the coeffi-
cient of ancilla state |0〉 in |Υ〉 is the required symmetrized state, i.e., an
equal amplitude superposition of all permutations of the R factor states of
|a1〉 |a2〉 . . . |aR〉.

Step 5. Measure the ancilla in its natural basis. If the outcome is “0” then |Ψ〉
has been successfully projected into SYM. If the outcome is not “0” then
the symmetrization has failed. (The issue of the probability of successful
symmetrization is discussed in a later section.)

Finally note that by linearity of the process, it will symmetrize a general state in HR
(not just the product states considered above). If the input state is already symmetric
then we get it back unchanged with certainty at the end.

Now consider the computational effort involved in the above steps. Let d = dim H
and write L = log2 d. Step 1 requires no computational effort. The ancilla requires
log2(R!) = O(R logR) qubits. Step 2 may be achieved by applying the discrete Fourier
transform [7], [8] to the ancilla. This requires O((R logR)2) steps. For step 3 we note
that a general permutation can be effected with O(R logR) swaps. Swapping states
of L qubits requires O(L) operations so overall step 3 requires O(LR logR) steps.
Restoring the ancilla in step 4 requires the same number of operations as step 2. In
step 5 we examine separately each of the O(R logR) qubits occupied by the ancilla,
requiring O(R logR) steps. Overall we require O(LR logR + (R logR)2) steps which
is less than O(LR2 +R4). Hence the process is efficient.

4. A quantum network for SYM projection. We now describe how the op-
eration of SYM projection can be implemented by a network of simple quantum gates.
Consider first the following inductive definition of the general permutation of k+1 ele-
ments a1, . . . , ak, ak+1 [23]. Starting from the general permutation aσ(1), . . . , aσ(k) of
the k elements a1, . . . , ak we adjoin ak+1 giving aσ(1), . . . , aσ(k), ak+1 and then per-
form separately the k+ 1 operations: identity, swap aσ(1) with ak+1, swap aσ(2) with
ak+1, . . . swap aσ(k) with ak+1. This generates all possible permutations of k+ 1 ele-
ments. In terms of state symmetrization, if we have already symmetrized |ψ1〉⊗ · · ·⊗
|ψk〉 (i.e., we have an equal superposition of all permutations of the states) then we
can symmetrize k+1 states |ψ1〉⊗· · ·⊗|ψk〉⊗|ψk+1〉 by applying only the operation of
state swapping (in suitable superposition). Thus the operation of symmetrization of R
states can be built up from |ψ1〉 by first symmetrizing |ψ1〉 and |ψ2〉, then successively
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including |ψ3〉 up to |ψR〉 always using only state swappings in suitably controlled
superpositions.

The basic ingredient in this process is the “controlled swap gate” or Fredkin
gate, acting on three input qubits. If the first (“control”) quit is |0〉 (respectively,
|1〉) then the other two (“target”) qubits are unaffected (respectively, swapped). We
describe this diagrammatically in Fig. 1. The operation of state swapping itself (i.e.,
|ψ1〉 ⊗ |ψ2〉 7→ |ψ2〉 ⊗ |ψ1〉) can be implemented using three controlled–NOT gates as
described in [15].

Fig. 1. Schematic representation of a Fredkin gate. A Fredkin gate exchanges the state of the
second and third qubit if and only if the first qubit is in state |a〉 = |1〉.

To symmetrize k + 1 qubits given that the first k are already symmetrized we
introduce k control qubits initially in state |0〉 |0〉 . . . |0〉 and apply a suitable unitary
transformation, denoted Uk to generate the superposition

1√
k + 1

(|00 . . . 0〉+ |10 . . . 0〉+ |01 . . . 0〉+ · · ·+ |00 . . . 1〉) .(6)

The unitary transformation Uk can be readily obtained by a quantum network con-
sisting of a one bit gate performing the transformation

1√
k + 1

(
1 −√k√
k 1

)
(7)

on the first quit and a sequence of k−1 two bit gates Tj,j+1 for j = 1, . . . , k−1 acting
on the jth and j + 1th qubits. In the basis {|0〉 , |1〉}, Tj,j+1 is given by:

Tj,j+1 =
1√

k − j + 1


√
k − j + 1 0 0 0

0 1
√
k − j 0

0 −√k − j 1 0
0 0 0

√
k − j + 1

 .(8)

Having thus initialized the k control qubits, we then apply k Fredkin gates—the jth
Fredkin gate (for j = 1, . . . k) uses the jth control quit to control the swapping of
the jth and (k+ 1)th target qubits. This leads to an entangled state of the k control
qubits and the k + 1 target qubits but after applying U−1

k to the control qubits, the
coefficient of |0〉 |0〉 . . . |0〉 will be the required symmetrization of the k + 1 qubits
(c.f. step 4 of section 3). Finally, a measurement of the control qubits will effect the
projection into SYM (cf. step 5 of section 3).

Thus to symmetrize R qubits we cascade the above construction with k = 1, 2, . . .
up to k = R−1 requiring a total number 1+2+ · · ·+(R−1) = R(R−1)/2 of control
qubits. The size of the overall network is clearly quadratic in R. For example, for the
symmetrization of R = 4 qubits we obtain the network shown in Fig. 2.
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Fig. 2. Quantum network for symmetrizing R = 4 qubits. Six auxiliary qubits initially in state
|0〉 are needed. The auxiliary qubits are put into an entangled state and used to control the state
swapping of the four computer qubits. The operations are then undone and the auxiliary qubits
measured. If every auxiliary quit is found in state |0〉 the symmetrization has been successful.

5. Stabilization against unitary errors. So far we have given an efficient
algorithm for projection into the symmetric subspace and provided an intuitive reason
why it would be expected to reduce the error while preserving the correct computation.
We now turn to a quantitative study of the effect of SYM-projection as a basis for
stabilization in the presence of various modes of error production. It is convenient to
separate the discussion into two parts considering the case where the joint state of
the computers remains in a pure state, in this section, and the case of decoherence
due to external environmental interaction in the following section.

Consider the simple model of R qubits initially in state (the “correct” state)
|0〉 |0〉 . . . |0〉 with computation being the identity, i.e., we are considering the state
storage problem with R–fold redundancy. Suppose that the R storage devices are
subject to independent hardware errors which cause the jth state to drift as eiHjt |0〉.
Here the Hamiltonians Hj are random and independent. Since the devices were
intended for state storage we assume that the rate of drift is suitably bounded. This
is expressed by requiring that all eigenvalues of the Hj ’s are suitably small

|eigenvalues of Hj | ≤ ε, j = 1, . . . , R(9)

for some (small) constant ε. The stabilization process consists of projecting the joint
state of the R copies into the symmetric subspace at short time intervals δt. For
simplicity we will assume that the projection can be performed essentially instanta-
neously. Furthermore, we assume that (unlike the computation being stabilized) the
projection process itself is error free. These and other assumptions will be discussed
in section 7. Under these assumptions we can readily compare the growth of errors
with and without the stabilization process.
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In the basis {|0〉 , |1〉} write

Hj =

(
aj c∗j
cj bj

)
(10)

so that

|cj | ≤ |λ1|+ |λ2| ≤ 2ε(11)

(where λ1, λ2 are the eigenvalues of Hj). We will assume that δt is small and we
retain only the lowest order terms in δt. After time δt the state will be

|Ψ(δt)〉 =

R⊗
k=1

{(1 + iakδt) |0〉+ ickδt |1〉} .(12)

Thus without symmetrization the probability that the ith qubit shows an error is

|ci|2δt2 ≈ 4ε2δt2.(13)

If we expand out the product in (12) we obtain 2R terms corresponding to the expo-
nentially large dimension of the full space of R qubits. However, the amplitudes of
terms involving k errors (i.e., products of |0〉’s and |1〉’s involving k |1〉’s) will have size
O(δtk) and only the R terms involving one error will have size O(δt). Thus the erro-
neous state (12) does not occupy these exponentially many dimensions of HR equally.
We noted previously that SYM is exponentially small inside HR but the preceding
observation indicates that SYM–projection will not generally remove exponentially
much of the error since only R of these exponentially many dimensions are entered
(to lowest order) by the erroneous evolution. We now calculate the stabilizing effect
of the SYM-projection.

Consider the basis of SYM given by the R + 1 orthonormal states (cf. (4) for
the case R = 3):

|ek〉 =
1√
RCk

∑
all “k-error” σ’s

|σ〉 , k = 0, . . . , R.(14)

Here the sum is over all RCk possible strings of 0’s and 1’s of length R containing
exactly k 1’s and R − k 0’s. Under SYM-projection the lowest order error terms
(single-error terms) of (12) will project only onto |e1〉. For the term with an error in
the kth place we get

ickδt |0〉 . . . |0〉 |1〉 |0〉 . . . |0〉 SYM proj
−→

ickδt√
RC1

|e1〉 .

Thus the normalized projected state has the form1 + iδt
R∑
j=1

aj

 |0〉 . . . |0〉+ α1 |e1〉+O(δt2)

where

α1 =
iδt√
R

R∑
j=1

cj .(15)
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To estimate the size of α1, using (11) we write cj ≈ 2εeiθj where θj are random phases.
The expectation value of α1 is then clearly zero but from

Expectation value of

∣∣∣∣∣∣
R∑
j=1

eiθj

∣∣∣∣∣∣ = √R(16)

we get 1

Expectation value of |α1|2 = 4ε2δt2.(17)

Thus, somewhat surprisingly, this probability of a single symmetrized error does not
decrease with R. However, it is associated with R copies and to see its residual effect
on any one copy we use the following fact.

Proposition 1. Consider the state

|Ξ〉 =

R∑
k=0

αk |ek〉 ∈ SYM ⊆ HR

where |ek〉 are as given in (14). If one qubit is measured in the basis {|0〉 , |1〉} the

probability of obtaining |1〉 is 1
R

∑R
k=0 |αk|2k.

Proof. Since the state is symmetric the probability of obtaining the result |1〉
for the ith qubit is the same as this probability for the first qubit. Now |ek〉 in (14)
consists of RCk orthogonal terms of which R−1Ck−1 have |1〉 in the first place. Hence,
the term αk |ek〉 in |Ξ〉 contributes probability

R−1Ck−1

∣∣∣∣∣ αk√
RCk

∣∣∣∣∣
2

= |αk|2k/R

of obtaining outcome |1〉.
Applying this result to (15) and using (17) we see that after successful sym-

metrization the probability of error (to lowest order in δt) is 4ε2δt2/R, i.e., the error
is suppressed by a factor of 1/R compared to the case (13) of no symmetrization and
in each step the amplitude of correct computation is correspondingly enhanced.

The above result is conditional on the success of the symmetrization, i.e., that the
state projects to SYM rather than SYM⊥. If the projections are done frequently
enough then the cumulative probability that they all succeed can be made as close
as desired to unity. This is a consequence of the so-called “quantum watched pot
effect” [16]. Consider a normalized joint state |Ξ〉 of R copies initially in SYM. Its
initial probability of successful projection is 1 which is a maximum. Thus as the state
evolves by some unitary transformation into the ambient space HR the probability of
successful projection will begin to change only to second order in time. If we project
n times per unit time interval, i.e., δt = 1/n then the cumulative probability that all
projections in one unit time interval succeed, is

(1− kδt2)n =

(
1− k

n2

)n
→ 1 as n→∞.

1 Remark [21]. If instead of qubit systems we consider computers with dimensions large compared
to the degree of redundancy R, then we would expect the individual random errors to be mutually
orthogonal, so when the state is symmetrized their sum does not exhibit the cancelling effects which
are present for qubits and lead to (16) and (17). However in that case, (17) and subsequent con-
clusions still hold because (16) may be replaced by Pythagoras’ theorem, i.e., that the sum of R
orthonormal vectors has length

√
R.
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Here k is a constant depending on the rate of rotation of the state out of SYM. For
redundancy degree R and the model of random unitary errors considered above we find
that k grows linearly with R (as can be seen by directly calculating the length of the
SYM-projection of (12) to O(δt2) terms). Thus to achieve a cumulative probability
of successful projection of 1 − ζ in a unit time interval we would require a rate of
symmetric projection which increases linearly with −R/ log(1− ζ).

The above conclusions—for a model of random independent unitary errors—will
also apply to computations which are not the identity. Formally, we may view the
computation in a moving basis relative to which the correct computation is the identity
and the previous arguments are unchanged, i.e., none of the arguments depends on
the actual identity of the computational basis states.

6. Stabilization against environmental interaction. We now consider the
problem of state storage with R-fold redundancy, in the presence of decoherence,
i.e., interaction with an external environment. In general each qubit will become
entangled with an environment and the state of the qubit alone will no longer be
describable by a pure state. It will be represented by a density matrix [16] resulting
from forming a partial trace over the environment, of the joint (pure) state of the
total qubit-environment system.

Consider R copies of the qubit initially all prepared in pure state ρ0 = |0〉 〈0|.
We will assume that they interact with independent environments (this assumption is
valid if the coherence length of the reservoir is less than the spatial separation between
the copies [6]) so that after some short period of time δt the state of the R copies will
have undergone an evolution

ρ(R)(0) = ρ0 ⊗ · · · ⊗ ρ0 −→ ρ(R)(δt) = ρ1 ⊗ · · · ⊗ ρR,(18)

where ρi = ρ0 +σi for some Hermitian traceless σi and the superscript R denotes the
number of states involved. We will retain only terms of first order in the perturbations
σi so that the overall state at time δt is

ρ(R) = ρ0 ⊗ · · · ⊗ ρ0+σ1 ⊗ ρ0 ⊗ · · · ⊗ ρ0

+ρ0 ⊗ σ2 ⊗ · · · ⊗ ρ0 . . .(19)

+ρ0 ⊗ ρ0 ⊗ · · · ⊗ σR
+O(σiσj),

and we wish to compute the projection of the state (19) into the symmetric subspace
SYM. Then we construct the state of the ith qubit by partial trace over all qubits
except the ith and finally compare the resulting state with ρ0 + σi and see that its
purity has been suitably enhanced, bringing it closer to ρ0.

The mathematical formalism for symmetrization of mixed states has some curious
features which we digress to clarify before treating (19) itself. Consider a state ρ1⊗ρ2

of two qubits. The state 1
2 (ρ1 ⊗ ρ2 + ρ2 ⊗ ρ1) is not a symmetric state and in fact

ρ ⊗ ρ is not symmetric (i.e., it is not a density matrix supported on the subspace
SYM) unless ρ is pure! To see this consider ρ written in its diagonalizing basis of
orthonormal eigenstates:

ρ = λ1 |λ1〉 〈λ1|+ λ2 |λ2〉 〈λ2| .(20)

Thus we can represent ρ as a mixture of its two eigenstates, and ρ ⊗ ρ as a mixture
of the four orthonormal states |λi〉 ⊗ |λj〉 with a priori probabilities pij = λiλj . This
latter mixture involves nonsymmetric states (like |λ1〉⊗|λ2〉) so ρ⊗ρ is not symmetric.
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One way of constructing the projection of ρ ⊗ ρ into SYM is to project each
state of the above mixture into SYM. Let |µij〉 denote the SYM-projection of

|λi〉 ⊗ |λj〉 and ˆ|µij〉 denote the corresponding normalized state. The probability of
successful projection is qij = 〈µij |µij〉. Then the SYM-projection of ρ ⊗ ρ is the

state corresponding to the mixture ˆ|µij〉 with a priori probabilities pijqij/(
∑
pijqij),

which are the conditional probabilities of occurrence of states ˆ|µij〉 given that the
SYM-projection was successful.

More formally we may introduce the (Hermitian) permutation operators P12 =
“identity” and P21 = “swap” acting on pure states of two qubits and define the
symmetrization operator:

S =
1

2
(P12 + P21).(21)

The SYM-projection of a pure state |Ψ12〉 of two qubits is just S |Ψ12〉, which is then
renormalized to unity. It follows that the induced map on mixed states of two qubits
(including renormalization) is

ρ1 ⊗ ρ2 −→ S(ρ1 ⊗ ρ2)S
†

TrS(ρ1 ⊗ ρ2)S†
.(22)

The state of either qubit is obtained separately by partial trace over the other qubit.
As an example consider the symmetric projection of ρ⊗ ρ followed by renormal-

ization and partial trace (over either qubit) to obtain the final state ρ̃ of one qubit,
given that the SYM-projection was successful. A direct calculation based on (22)
yields

ρ 7→ ρ̃ =
ρ+ ρ2

Tr (ρ+ ρ2)
.(23)

For any mixed state ξ of a qubit the expression Tr ξ2 provides a measure of the purity
of the state, ranging from 1/4 for the completely mixed state I/2 (where I is the unit
operator) to 1 for any pure state. From (23) we get

Tr ρ̃2 > Tr ρ2

so that ρ̃ is purer than ρ. This example illustrates a generic fact (cf. below), that
successful projection of a mixed state into SYM tends to enhance the purity of the in-
dividual systems. Indeed, consider further the state ⊗Rρ consisting of R independent
copies of ρ. The symmetrization operator is

S =
1

R!

R!∑
α=1

Pα,(24)

where the sum ranges over all R! permutations of the R indices. If we project ⊗Rρ
into SYM and renormalize (as in (22)) and calculate the partial trace over all but
one of the qubits, we obtain a reduced state ρ̃R which asymptotically tends to a pure
state as R→∞. This limiting pure state is the eigenstate of ρ belonging to its largest
eigenvalue.

Let us now return to the consideration of (19) and its SYM-projection. The
application of the symmetrization operator (24) to each of the R terms of ρ0 ⊗ · · · ⊗



1554 A. BARENCO ET AL.

σi ⊗ · · · ⊗ ρ0 of equation (19) generates R!2 terms of the form

1

R!2
Pαρ0 ⊗ · · · ⊗ σi ⊗ · · · ⊗ ρ0Pβ ,(25)

where Pα and Pβ are permutation operators on the state space HR of R qubits as
above. To calculate the reduced density operator of the first qubit we take the partial
trace over the R − 1 remaining qubits. Note that the reduced states of all qubits
individually are equal since the total overall state is symmetric. (To systematize
the calculation of the partial traces we have found it very convenient to use the
diagrammatic notation for tensor operations introduced by Penrose in [22].) For each
σi we find that the R!2 terms in (25) then reduce to the following cases:

(i) (R − 1)!2 terms each equal to σi/R!2 corresponding to all permutations Pα
and Pβ which place σi in the first position in (25). In this case the partial
trace contracts out all the ρ0 terms leaving a coefficient of 1/R!2 (as the trace
of any power of ρ0 is 1).

(ii) (R− 1)!2(R− 1)R terms of the forms ρ0σiρ0, ρ0σi, σiρ0, or ρ0Tr(σiρ0), each
one divided by R!2. These correspond to all pairs of permutations which
result in σi contracted onto ρ0 in all possible ways in the partial traces.

(iii) (R − 1)!2(R − 1) terms which result in σi being contracted onto itself in the
partial traces. These terms are all zero since Trσi = 0.

Note that each term in (ii) has trace given by Trσiρ0/R!2 and each term in (i) has
zero trace. Thus the resulting density operator, before normalization, has a trace
given by

1 + (R− 1)Tr(ρ0σ̃),(26)

where we have introduced σ̃ = 1
R

∑R
i=1 σi. We normalize the density operator by

dividing the sum of all terms in (i) and (ii) for all i = 1, . . . , R by (26), the resulting
symmetrized density operator ρ̃ can be written

ρ̃ = [1− (R− 1)Tr(ρ0σ̃)]ρ0 +
1

R
σ̃

+ (R− 1)[Aρ0σ̃ρ0 +B(ρ0σ̃ + σ̃ρ0) + Cρ0Tr(σ̃ρ0)] +O(σiσj),(27)

where A, B, and C depend on R and A+ 2B + C = 1.
If a general mixed state ξ of a qubit is measured in the basis {|0〉 , |1〉} then the

probability that the outcome is 0 is given by 〈0| ξ |0〉 = Tr ρ0ξ. This provides the
success probability in our present model. Thus the average success probability before
symmetrization of the perturbed qubits is

1

R

∑
i

Tr ρ0(ρ0 + σi) = 1 + Tr ρ0σ̃(28)

(note that consequently Tr ρ0σ̃ is necessarily negative). After symmetrization, using
(27) we see that

Tr ρ0ρ̃ = 1 +
1

R
Tr ρ0σ̃.(29)

Hence, the probability of error has again been reduced by a factor of R—exactly as
found in the previous section.
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We can calculate the average purity of the R copies before symmetrization by
calculating the average trace of the squared states:

1

R

R∑
i=1

Tr((ρ0 + σi)
2) = 1 + 2Tr(ρ0σ̃).(30)

After symmetrization each qubit has purity

Tr(ρ̃2) = 1 + 2
1

R
Tr(ρ0σ̃).(31)

Since Tr ρ̃2 is closer to 1 than (30), the resulting symmetrized system ρ̃ is left in a
purer state. Indeed it follows from (29) that ρ̃ approaches the unperturbed state ρ0

as R tends to infinity.

7. Limitations. Error correction is itself a quantum computation. The above
analysis has ignored the inevitable build up of errors in the computer performing that
computation. Indeed for the symmetrization of R qubits the projection algorithm
requires an ancilla of at least R! dimensions, i.e., O(R logR) qubits (in fact O(R2) in
our explicit network). Thus the correcting apparatus is slightly larger than the total
system being corrected so the error correction ought to be subject to a similar level of
error as is present in the original system. In a situation where the redundancy degree
R is small compared to the number L of qubits per computer, the correcting appara-
tus (still of O(R2) qubits) will be small compared to the size RL of the system being
corrected. However, as seen in section 5, the stabilization of a linear computation on
input size L requires redundancy degree R ∼ L so that the correcting apparatus and
the computer are again of comparable size. This means that each error correcting step
introduces errors of a similar, or even greater, probability than those it is correcting.
This does not, however, necessarily render it ineffective. Consider the following il-
lustrative example. A certain clock is accurate to one second per day. Each day at
noon it is reset using a standard time signal, the resetting operation being accurate
only to one minute, i.e., 60 times worse than the error being corrected. Nevertheless,
after 10 years the corrected clock will still be in error by at most one minute. If
left uncorrected the error could be almost an hour. In our stabilization method the
analogue of “resetting noon to within one minute” is projection into SYM with some
error tolerance. Thus although the projection is imperfect, the state never drifts very
far from SYM as it would do in the absence of any stabilization.

The main factor limiting the efficiency of our proposed method will be the fre-
quency with which the error correcting operations can be physically performed. As
noted at the end of section 5, to achieve a cumulative probability 1 − δ of repeated
successful projection in a unit time interval, the rate of symmetric projection must
increase linearly with the degree of redundancy R. Also as noted in section 1, the
stabilization of a computer with input size L, running for L steps, requires R to in-
crease linearly with L. Hence, we need the overall rate of symmetric projection to
increase linearly with L even for a linear time computation. Thus, beyond a certain
input size, each symmetrization will have to be performed in a time shorter than that
needed to perform the elementary quantum gate operations. Since increasing the rate
of computation by a factor k presumably requires resources exponential in k, our
method would necessarily require exponential resources for sufficiently large L. This
property is shared by all quantum error correction schemes that have been proposed
to date. Hence quantum algorithms (such as Shor’s factoring algorithm), which are
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polynomially efficient in the absence of errors, would not be efficient if physically
implemented. We wish to stress that the traditional notion of efficiency (based on
the distinction between polynomial and exponential growth) is an asymptotic notion
referring to computations on unboundedly large inputs. This may not be appropriate
in assessing the feasibility of particular computations in practice. For example, if a
quantum computer could factorize a 1000-digit integer in a reasonable time it may
still exceed the abilities of any classical computer for the foreseeable future albeit that
the factorization of 2000-digit integers might be infeasible on any computer.

8. Conclusion. If the technology to implement the scheme we have described
were available, it would provide a method of stabilizing general coherent computations
though not with exponential efficiency. This is because although only polynomially
many steps are required in the stabilization computation, these need to be performed
in a fixed time, a characteristic time of error growth per bit.
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