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Preface

These lecture notes are based on a set of six lectures that I gave in Edinburgh

in 2008/2009 and they cover some topics in the interface between Geometry and

Physics. They involve some unsolved problems and conjectures and I hope they

may stimulate readers to investigate them.

I am very grateful to Thomas Köppe for writing up and polishing the lectures,

turning them into intelligible text, while keeping their informal nature. This

involved a substantial effort at times in competition with the demands of a Ph.D

thesis. Unusually for such lecture notes I found little to alter in them.

Michael Atiyah

Edinburgh, September 2010
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lecture series 1

From Euclidean 3-space to complex

matrices

December 8 and 15, 2008

1.1 Introduction

We will formulate an elementary conjecture for 𝑛 distinct points in R3, which is

unsolved for 𝑛 ≥ 5, and for which we have computer evidence for 𝑛 ≤ 30. The

conjecture would have been understood 200 years ago (by Gauss). What is the

future for this conjecture?

∙ A counter-example may be found for large 𝑛.

∙ Someone (perhaps from the audience?) gives a proof.

∙ It remains a conjecture for 300 years (like Fermat).

To formulate the conjecture, we recall some basic concepts from Euclidean and

hyperbolic geometry and from Special Relativity.
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1.2 Euclidean geometry and projective space

The two-dimensional sphere 𝑆2 =
{︀

(𝑥, 𝑦, 𝑧) ∈ R2 : 𝑥2 + 𝑦2 + 𝑧2 = 1
}︀

is “the same

as” the complex projective line CP1 = C ⊔ {∞}, on which we have homogeneous

coordinates [𝑢1 : 𝑢2]. Stereographic projection through a “north pole” 𝑁 ∈ 𝑆2

identifies 𝑆2 ∖ {𝑁} with C, and it extends to an identification of 𝑆2 with CP1 by

sending 𝑁 to ∞.

Exercise 1.2.1. Suppose we have two stereographic projections from two “north

poles” 𝑁 and 𝑁 ′. Show that these give a map CP1 → CP1 which is a complex

linear transformation

𝑢′ =
𝑎𝑢 + 𝑏

𝑐𝑢 + 𝑑
, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ C and 𝑎𝑑− 𝑏𝑐 ̸= 0.

Hint: Start by considering stereographic projection from 𝑆1 to R first.

1.3 From points to polynomials

We will now associate to each set of 𝑛 distinct points in R3 a set of 𝑛 complex

polynomials (defined up to scaling).

The case 𝑛 = 2. Given two points 𝑥1, 𝑥2 ∈ R3 with 𝑥1 ̸= 𝑥2, define

𝑓(𝑥1, 𝑥2) :=
𝑥2 − 𝑥1
‖𝑥2 − 𝑥1‖

∈ 𝑆2 ,

which gives a unit vector in the direction from 𝑥1 to 𝑥2. Under the identification

𝑆2 ∼= CP1, 𝑓 associates to each pair (𝑥1, 𝑥2) a point in CP1. Exchanging 𝑥1 and

𝑥2 is just the antipodal map 𝑥 ↦→ −𝑥 on 𝑆2.

The general case. Given 𝑛 (ordered) points 𝑥1, . . . , 𝑥𝑛 ∈ R3, we obtain 𝑛(𝑛−1)

points in CP1 by defining

𝑢𝑖𝑗 :=
𝑥𝑗 − 𝑥𝑖
‖𝑥𝑗 − 𝑥𝑖‖

∈ 𝑆2 ∼= CP1 for all 𝑖 ̸= 𝑗. (1.1)

For each 𝑖 = 1, . . . , 𝑛 we define a polynomial 𝛽𝑖 ∈ C[𝑧] with roots 𝑢𝑖𝑗 (𝑗 ̸= 𝑖):

𝛽𝑖(𝑧) =
∏︁
𝑗 ̸=𝑖

(𝑧 − 𝑢𝑖𝑗) (1.2)

2
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The polynomials 𝛽𝑖 are determined by their roots up to scaling. We make the

convention that if for some 𝑗 we have 𝑢𝑖𝑗 = ∞, then we omit the 𝑗th factor,

so that 𝛽𝑖 drops one degree. In fact, a more invariant picture arises if instead

we consider the associated homogeneous polynomials 𝐵𝑖 ∈ C[𝑍0, 𝑍1] given by

𝐵𝑖(𝑍0, 𝑍1) =
∏︀

𝑗

(︀
𝑉𝑖𝑗𝑍0 − 𝑈𝑖𝑗𝑍1

)︀
, where [𝑈𝑖𝑗 : 𝑉𝑖𝑗 ] = [𝑢𝑖𝑗 : 1], so 𝛽𝑖(𝑧) = 𝐵𝑖(𝑧, 1).

We are now ready to state the simplest version of the conjecture:

Conjecture 1.3.1 (Euclidean conjecture). For all sets (𝑥1, . . . , 𝑥𝑛) ⊂ R3 of 𝑛

distinct points, the 𝑛 polynomials 𝛽1(𝑧), . . . , 𝛽𝑛(𝑧) are linearly independent over C.

Remark 1.3.2. The condition of linear independence of the polynomials 𝛽𝑖 is

independent of the choice of stereographic projection in Equation 1.1 by Exercise

1.2.1.

Example (𝑛 = 3). Suppose 𝑥1, 𝑥2, 𝑥3 are distinct points in R3. They are auto-

matically co-planar, so that 𝑥1, 𝑥2, 𝑥3 ∈ R2 ⊂ R3. So the points 𝑢𝑖𝑗 lie in some

great circle 𝑆1 ⊂ 𝑆2 ∼= CP1.

We can choose the north pole 𝑁 for the stereographic projection in Equation

1.1 either such that all 𝑢𝑖𝑗 lie in the equator, in which case |𝑢𝑖𝑗 | = 1 and 𝑢𝑗𝑖 = −𝑢𝑖𝑗 ,

or such that all 𝑢𝑖𝑗 lie on a meridian, in which case 𝑢𝑖𝑗 ∈ RP1 and 𝑢𝑗𝑖 = −1
⧸︀
𝑢𝑖𝑗 .

Let us stick with the first convention, so that all 𝑢𝑖𝑗 lie on the equator and we

have |𝑢𝑖𝑗 | = 1 and 𝑢𝑗𝑖 = −𝑢𝑖𝑗 . This defines three quadratics

𝛽1(𝑧) = (𝑧 − 𝑢12)(𝑧 − 𝑢13) = (𝑧 − 𝑢12)(𝑧 − 𝑢13)

𝛽2(𝑧) = (𝑧 − 𝑢21)(𝑧 − 𝑢23) = (𝑧 + 𝑢12)(𝑧 − 𝑢23)

𝛽3(𝑧) = (𝑧 − 𝑢31)(𝑧 − 𝑢32) = (𝑧 + 𝑢13)(𝑧 + 𝑢23)

In this case we can prove Conjecture 1.3.1 in two ways:

∙ By geometric methods: Represent quadratics by lines in a plane, then linear

dependence of the 𝛽𝑖 is the same as concurrence.

∙ By algebraic methods: Compute the determinant of the (3 × 3)-matrix of

coefficients of the 𝛽𝑖 and show that it has non-vanishing determinant.

For the case 𝑛 = 4, there exists a proof using computer algebra. For 𝑛 ≥ 5, no

proof is known, even for co-planar points (i.e. real polynomials). A proof will be

rewarded with a bottle of champagne or equivalent. The easiest point of departure

is to consider four points in a plane.

3
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1.4 Some physics: hyperbolic geometry

Consider again the 2-sphere 𝑆2 ⊂ R3, and add a fourth variable 𝑡 (for “time”):

𝑥2 + 𝑦2 + 𝑧2 −𝑅2𝑡2 = 0 (1.3)

This is the metric of Minkowski space-time. Here 𝑅 is the speed of light, and

Equation (1.3) defines a light cone. Our original 2-sphere is the base of the light

cone, the “celestial sphere” of an observer.

The (proper, orthochronous) Lorentz group 𝑆𝑂+(3, 1) acts on 𝑆2 ∼= CP1 as a

group of complex projective transformations 𝑆𝐿(2;C)
⧸︀
±1 = 𝑃𝑆𝐿(2;C).

The Euclidean version of this picture is the following: The rotation group

of R3, 𝑆𝑂(3), acts as 𝑆𝑈(2)
⧸︀
±1 =: 𝑃𝑆𝑈(2) ∼= 𝑃𝑈(2) on 𝑆2 ∼= CP1 preserving

the metric given by Equation (1.3) (“rigid motion”). We can also see this as the

projectivisation of the action of 𝑆𝑈(2) or 𝑈(2) on C2, and the projectivisation

map

𝑆𝑈(2) � 𝑃𝑆𝑈(2) ∼= 𝑆𝑂(3)

is a double cover. This map is the restriction to the maximal compact subgroup of

the double cover 𝑆𝐿(2;C) � 𝑃𝑆𝐿(2;C) ∼= 𝑆𝑂+(3, 1).

We have two different representations of 𝑆𝐿(2;C) ∼= 𝑆𝑂+(3, 1) (double cover):

It acts on real 4-dimensional space-time R3,1 by proper, orthochronous Lorentz

transformations, and it acts on complex 2-dimensional space C2 (whose elements

we call spinors). The fundamental link between these two representations is via

projective spinors: A (projectivised) point in (C2 ∖ {0})
⧸︀
C× ∼= CP1 corresponds to

a point on the base of the light cone, 𝑆2.

Consider the hyperboloid given by 𝑥2 + 𝑦2 + 𝑧2 − 𝑅2𝑡2 = −𝑚2. Denote the

interior of the base of the light cone by 𝐻𝑚. The metric induced on 𝐻𝑚 has

constant negative curvature, and indeed it turns 𝐻𝑚 into a model of hyperbolic

3-space with curvature −1/𝑚2.

The Lorentz group 𝑆𝑂+(3, 1) acts transitively on hyperbolic 3-space 𝐻3 by

isometries, and it acts by 𝑆𝐿(2;C)
⧸︀
±1 on the 2-sphere at infinity.

1.5 The hyperbolic conjecture.

Given 𝑛 distinct, ordered points in 𝐻3, define the point 𝑢𝑖𝑗 as the intersection

of the oriented geodesic joining 𝑥𝑖 to 𝑥𝑗 with the 𝑆2 at infinity. We define 𝑛

polynomials 𝛽1, . . . , 𝛽𝑛, where 𝛽𝑖 has roots 𝑢𝑖𝑗 , as before in Equation (1.2) (but

4
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note that in hyperbolic space we no longer have a notion of “antipodal points”).

This brings us to the second, stronger version of the conjecture:

Conjecture 1.5.1 (Hyperbolic conjecture). For all sets (𝑥1, . . . , 𝑥𝑛) ⊂ 𝐻3 of 𝑛

distinct points, the 𝑛 polynomials 𝛽1(𝑧), . . . , 𝛽𝑛(𝑧) are linearly independent over C.

Remarks 1.5.2.

∙ There is good numerical evidence for the hyperbolic conjecture.

∙ The conjecture uses only the intrinsic geometry of hyperbolic 3-space, so it

is invariant under the group of isometries (i.e. the Lorentz group).

∙ A model for 𝐻3 is the open ball 𝐵3 ⊂ R3. We can actually forget about the

geometry of 𝐻3 and just consider the points 𝑥1, . . . , 𝑥𝑛 to lie in 𝐵3 ⊂ R3.

Letting the radius of the ball 𝐵3 grow (which is equivalent to letting the

curvature of the hyperbolic space go to zero) exhibits the Euclidean conjecture

as a limiting case of the hyperbolic conjecture.

Remark 1.5.3 (The ball of radius 𝑅). As we said in Remark 1.5.2 (3), we can

view the hyperbolic conjecture as a statement about points inside the unit ball

𝐵3, and more generally inside any ball 𝐵3
𝑅 of radius 𝑅 ≥ 0 – this corresponds to

hyperbolic space of constant curvature −1/𝑅2.

We might expect that if the conjecture is false, then a counter-example would

be given by a rather special configuration of the 𝑛 points 𝑥1, . . . , 𝑥𝑛. The following

example treats the most special configuration, namely the collinear one.

Example. Let 𝑥1, . . . , 𝑥𝑛 be collinear in 𝐵3
𝑅, and choose complex coordinates on

the boundary 𝑆2 such that all the roots of 𝑝1 are at infinity, so that 𝑝1(𝑧) = 1.

But then 𝑝2(𝑧) = 𝑧, 𝑝3(𝑧) = 𝑧2, . . . , 𝑝𝑛(𝑧) = 𝑧𝑛−1, and these are clearly linearly

independent.

1.6 The Minkowski space conjecture

Consider two world lines 𝜉1, 𝜉2 in R3,1 representing world-like motion of two “stars”.

Consider the two points 𝑥1, 𝑥2 on 𝜉1, 𝜉2, respectively, representing events when an

“observer” looks up into the sky and “sees” the other star on his celestial sphere,

and denote the points on the respective celestial spheres 𝑆2 ∼= CP1 by 𝑢12 and 𝑢21.

5
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We make this more precise and more general:

Given 𝑛 moving stars (i.e. non-intersecting world lines) 𝜉1, . . . , 𝜉𝑛 and 𝑛 events

𝑥𝑖 ∈ 𝜉𝑖, let 𝑢𝑖𝑗 be the point in the celestial sphere of 𝑥𝑖 at which the past light cone

at 𝑥𝑖 intersects the world line 𝜉𝑗 . In other words, 𝑥𝑖 “sees” 𝑛− 1 other stars at

points 𝑢𝑖𝑗 in its own celestial sphere. Since in (flat) Minkowski space all celestial

spheres can be identified by parallel translations, we may consider all the points

𝑢𝑖𝑗 to live in the space CP1.

Again we form the polynomials 𝛽𝑖 from the roots 𝑢𝑖𝑗 as in Equation (1.2) and

come to the third and strongest version of the conjecture.

Conjecture 1.6.1 (Minkowski space conjecture). Let 𝜉1, . . . , 𝜉𝑛 ⊂ R3,1 be 𝑛 non-

intersecting world lines in Minkowski space and {𝑥1, . . . , 𝑥𝑛} a set of 𝑛 (distinct)

events such that 𝑥𝑖 ∈ 𝜉𝑖 for all 𝑖. Then the polynomials 𝛽1(𝑧), . . . , 𝛽𝑛(𝑧) are linearly

independent over C.

Remarks 1.6.2.

1. Since the Lorentz group is essentially 𝑆𝐿(2;C), the Minkowski space conjec-

ture is “physical”, i.e. Lorentz-invariant.

2. If all stars emerge from a “big bang”, i.e. if all world lines meet in a point

in the past, then the Minkowski space conjecture reduces to the hyperbolic

conjecture.

3. If stars are “static”, the Minkowski conjecture reduces to the Euclidean

conjecture.

4. The Minkowski conjecture is true for 𝑛 = 2 (𝑢12 ̸= 𝑢21). There is no other

evidence!

5. See [2] and [4] for details.

Challenge. Prove or disprove the Minkowski space conjecture for 𝑛 = 3.

Remarks.

1. Conjecture 1.6.1 refers to world lines. These can be interpreted as world

lines of particles or “stars” in uniform motion and this gives one version of

the conjecture. A stronger version arises if we allow all “physical motion”

(i.e. not exceeding the velocity of light). In [2] I produced what purported to

6
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be an elementary counterexample for 𝑛 = 3. However, on closer inspection

this involves motion faster than light, so the general conjecture is still open.

2. It is even tempting to consider motion on a curved space-time background

but since we now have to worry about parallel transport it is not clear how

to formulate a conjecture.

1.7 The normalised determinant

We begin by recalling some basic results from linear algebra. Consider the decom-

position

R2 ⊗ R2 ∼= R4 ∼= Sym2
(︀
R2
)︀
⊕ Λ2

(︀
R2
)︀ ∼= R3 ⊕ R1 .

We can view the sum on the right-hand side as the decomposition of real (2 × 2)-

matrices into symmetric and skew-symmetric parts, and we may think of the

symmetric part Sym2
(︀
R2
)︀

as a space of symmetric polynomials (of degree 2) and

of the alternating part Λ2
(︀
R2
)︀

as the “area” or “determinant”. The linear group

𝐺𝐿(2;R) acts on both summands and preserves this decomposition, and it acts

on the area by multiplication by the determinant. 𝑆𝐿(2;R) acts trivially on the

R1-summand.

The complex analogue of this picture is the following: The group 𝑆𝐿(2;C) acts

trivially on Λ2
(︀
C2
)︀ ∼= C and on Λ𝑛(C𝑛) ∼= C. (Note: C𝑛 ∼= Sym𝑛−1

(︀
C2
)︀
.) The

group action preserves the standard symplectic form on C2.

Now suppose we have 𝑛 distinct points 𝑥1, . . . , 𝑥𝑛 inside a ball of radius 𝑅,

and the numbers 𝑢𝑖𝑗 ∈ CP1 are defined as in Equation 1.1. Lift the 𝑢𝑖𝑗 to any

𝑣𝑖𝑗 ∈ C2, i.e. pick a vector 𝑣𝑖𝑗 = (𝑧1, 𝑧2) such that 𝑧1
⧸︀
𝑧2 = 𝑢𝑖𝑗 . Using the standard

symplectic form, we identify C2 with its dual (C2)∨, and using this identification

we consider the 𝑣𝑖𝑗 as one-forms. Since 𝑢𝑖𝑗 ̸= 𝑢𝑗𝑖, 𝑣𝑖𝑗 ∧ 𝑣𝑗𝑖 ̸= 0. Now fix the

constant multiplier by setting

𝑝𝑖 =
∏︁
𝑗 ̸=𝑖

𝑣𝑖𝑗 ∈ Sym𝑛−1
(︀
(C2)∨

)︀ ∼= (C𝑛)∨ ,

and define

𝐷𝑅(𝑥1, . . . , 𝑥𝑛) =
𝑝1 ∧ 𝑝2 ∧ · · · ∧ 𝑝𝑛∏︀

𝑖<𝑗

(︀
𝑣𝑖𝑗 ∧ 𝑣𝑗𝑖

)︀ . (1.4)

Remarks 1.7.1. Here the numerator is an element of Λ𝑛(C𝑛) ∼= C, concretely

given by the determinant of the (𝑛×𝑛)-matrix of the coefficients of the polynomials

𝑝𝑖. The denominator is a product of elements of Λ2
(︀
C2
)︀ ∼= C. Changing the choice

7
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of 𝑉𝑖𝑗 by a factor 𝜆𝑖𝑗 multiplies both numerator and denominator by the same

factor
∏︀

𝑖 ̸=𝑗 𝜆𝑖𝑗 , so 𝐷𝑅 depends only on the points 𝑥1, . . . , 𝑥𝑛. Permuting the

points 𝑥1, . . . , 𝑥𝑛 produces the same sign change in numerator and denominator,

so 𝐷𝑅 is invariant under permutations.

Definition 1.7.2 (Normalised determinant). For 𝑛 distinct points 𝑥1, . . . , 𝑥𝑛 in

R3 inside a ball of radius 𝑅, we define the normalised determinant 𝐷𝑅 to be as in

Equation (1.4). (This normalization gives 𝐷𝑅 = 1 for collinear points.)

Computation of 𝐷𝑅. Given 𝑛 distinct points 𝑥1, . . . , 𝑥𝑛 inside a ball of radius

𝑅, choose for each pair 𝑖 < 𝑗 lifts 𝑣𝑖𝑗 , 𝑣𝑗𝑖 such that 𝑉𝑖𝑗 ∧ 𝑉𝑗𝑖 = 𝜔2. Write each

𝑝𝑖 in terms of the monomials 𝑡𝑛−1−𝑖
0 𝑡𝑖1, where {𝑡0, 𝑡1} is a basis for C2 satisfying

𝑡0 ∧ 𝑡1 = 𝜔2. If we denote by 𝑃 the (𝑛 × 𝑛)-matrix whose (𝑖, 𝑗)-entry is the

𝑗th coefficient of 𝑝𝑖, then 𝐷𝑅(𝑥1, . . . , 𝑥𝑛) = det𝑃 (hence the name “normalised

determinant”).

Properties of the normalised determinant.

1. 𝐷𝑅(𝑥1, . . . , 𝑥𝑛) is invariant under the 𝑆𝐿(2;R)-action (i.e. the isometries of

𝐻3
𝑅) on the points 𝑥1, . . . , 𝑥𝑛, and it is continuous in (𝑥1, . . . , 𝑥𝑛).

2. The limit 𝐷∞ := lim𝑅→∞𝐷𝑅 exists and is invariant under the group of

Euclidean motions (translations and rotations of R3).

3. 𝐷𝑅(𝑥1, . . . , 𝑥𝑛) = 1 for collinear points.

4. 𝐷𝑅 → 𝐷𝑅 under reflection of R3 (so 𝐷𝑅 is real for coplanar points).

5. For 𝑛 = 3,

𝐷∞ =
1

2

3∑︁
𝑖=1

cos2
(︀
𝐴𝑖
2

)︀
,

where 𝐴𝑖 are the angles of a triangle, varying between 1 for collinear and 9/8

for equilateral configurations. For 𝑛 ≥ 4, 𝐷𝑅 is complex-valued in general.

6. 𝐷∞ is scale-invariant: 𝐷∞(𝜆𝑥1, . . . , 𝜆𝑥𝑛) = 𝐷∞(𝑥1, . . . , 𝑥𝑛) for 𝜆 > 0.

7. In the hyperbolic case, 𝐷𝑅(𝑥1, . . . , 𝑥𝑛) → 𝐷𝑅(𝑥1, . . . , 𝑥𝑛−1) as |𝑥𝑛| → 𝑅.

(This generalises to the so-called “cluster decomposition”: If the points

𝑥1, . . . , 𝑥𝑛 fall into two “clusters” at great distance, then 𝐷𝑅 is approximately

the product of the 𝐷𝑅’s of the clusters.)

8
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The formalism of the normalised determinant allows us to rephrase our conjec-

tures, and assuming normalisation we can actually state stronger forms:

∙ The Euclidean conjecture 1.3.1. Weak form: 𝐷∞ ≠ 0. Strong form: |𝐷∞| ≥ 1

after normalisation.

∙ The hyperbolic conjecture 1.5.1. Weak form: |𝐷𝑅| ≠ 0. Strong form

|𝐷𝑅| ≥ 1, after normalisation, with equality for collinear points.

∙ We also have a new conjecture, the monotonicity conjecture: |𝐷𝑅| increases

with 𝑅 (for fixed 𝑥1, . . . , 𝑥𝑛).

Remarks 1.7.3. 𝐷𝑅(𝑥) = 𝐷𝜆𝑅(𝜆𝑥), so the hyperbolic conjecture is independent

of 𝑅. So if it is true for finite 𝑅, then it is true for 𝑅 = ∞.

The Minkowski space conjecture implies the hyperbolic conjecture: Shrink 𝑆2
𝑅

to 𝑆2
𝑅′ , where 𝑅′ = |𝑥𝑛| = max𝑖 |𝑥𝑖|, then apply Property (7) inductively.

The normalised determinant 𝐷𝑅 can be defined for points inside any ellipsoid

𝑆, in which case we denote it by 𝐷𝑆 . This is because 𝑆 can be changed into a

standard sphere by affine linear transformations of 𝑅3 (which preserve straight

lines). We can reduce 𝑥2 + 𝑦2 + 𝑧2 = 1 to 𝑥2/𝑎2 + 𝑦2/𝑏2 + 𝑧2/𝑐2 = 1 by choice of

𝑎, 𝑏, 𝑐 ≥ 1.

Remark 1.7.4 (Ellipsoid version). The Minkowski space conjecture can be stated

in terms of ellipsoids: Suppose 𝑆′ ⊇ 𝑆 are two ellipsoids in R3 containing 𝑛 distinct

points (𝑥1, . . . , 𝑥𝑛). Then

|𝐷𝑆′(𝑥1, . . . , 𝑥𝑛)| ≥ |𝐷𝑆(𝑥1, . . . , 𝑥𝑛)| .

To see this, consider the situation where 𝑆′ ⊇ 𝑆 are two light cones. Then

|𝐷𝑆′ | ≥ |𝐷𝑆 |. A physical interpretation is that if 𝑆′ is the vacuum light cone and

𝑆 the light cone in a medium, then |𝐷med| ≤ |𝐷vac|.

1.8 Relation to analysis and physics

The Dirac equation. Let 𝑠(𝑥) be a spinor field in R3. The Dirac equation in

vacuum is

𝐷𝑠 =

3∑︁
𝑗=1

𝐴𝑗
𝜕𝑠

𝜕𝑥𝑗
= 0 ,

9



10

where 𝐴𝑗 are (2×2)-matrices, 𝐴2
𝑗 = −1, 𝐴𝑖𝐴𝑗 = −𝐴𝑗𝐴𝑖 = 𝐴𝑘 (the Pauli matrices).

The point monopole. Given (𝑥1, . . . , 𝑥𝑛), consider these as locations of 𝑛

Dirac monopoles and take the Dirac equation 𝐷𝑠 = 0 in the background field. We

need to impose suitable singular behaviour at 𝑥1, . . . , 𝑥𝑛 and decay at infinity.

We expect an 𝑛-dimensional space of solutions. Examine the asymptotic

behaviour at infinity: Can we find our polynomials 𝛽𝑖 in this (e.g. as a basis of

the solutions)? Would this imply the Euclidean conjecture?

In the hyperbolic case, the asymptotic behaviour may be exponential decay,

with polynomial angular dependence. Would this imply the radius-𝑅 conjecture

for finite 𝑅?

The four-dimensional variant. Let 𝑀4 be the Hawking-Gibbons 4-manifold,

which has an action of 𝑈(1). The quotient is 𝑀4
⧸︀
𝑈(1) = R3, and the 𝑈(1)-action

has 𝑛 fixed points, which determine 𝑛 points 𝑥1, . . . , 𝑥𝑛 in R3.

Reinterpret on 𝑀4: The solutions of the four-dimensional Dirac equation on

𝑀4 inherit an action of 𝑈(1). The invariant solutions on 𝑀4 correspond to the

singular solutions on R3. This disposes of the singular behaviour at 𝑥𝑖. We still

require decay at infinity.

Next step: The Dirac equation is conformally invariant, so we can form the

conformal compactification 𝑀 (which has a mild singularity at infinity). This

replaces asymptotic behaviour by local behaviour near infinity.

In the final step, we form the twistor space of 𝑀 and use the complex methods

of sheaf theory: Under the twistor transform, solutions of the Dirac equation

correspond to sheaf cohomology. In particular, we expect a certain first cohomology

to have dimension 𝑛.

To relate this to polynomials and our conjectures, we must use real numbers

and positivity. This is close to (real) algebraic geometry.

Hyperbolic analogue. Four-manifold 𝑁4 with special metric and 𝑈(1)-action

with 𝑛 fixed points and 𝑁4
⧸︀
𝑈(1) = 𝐵3, the “inside” of 𝑆2 in R3 with the hyperbolic

metric. It admits a conformal compactification 𝑁 , on which we have a 𝑈(1)-action

with 𝑛 fixed points and a fixed 𝑆2 ⊂ 𝑁 ∖𝑁4. Twistor methods still apply to this

case, but is it better than the Euclidean case? This leads to the theory of LeBrun

manifolds. See Atiyah-Witten, which includes a problem about the existence of

𝐺2 metrics on 7-manifolds which are R3-bundles over 𝑁4 and generalise the cases

𝑛 = 0 and 𝑛 = 1.

10
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Lie group generalisation. The Euclidean conjecture implies the existence of

a continuous map

𝑓𝑛 : 𝐶𝑛

(︀
R3
)︀
→ 𝐺𝐿(𝑛;C)

⧸︀
(C×)𝑛 → 𝑈(𝑛)

⧸︀
𝑇𝑛

compatible with the action of the symmetric group. Specifically, the value in

𝐺𝐿(𝑛;C) is the matrix of coefficients of the polynomials 𝑝𝑖, and the quotient by

(C×)𝑛 accounts for the freedom of scale.

The configuration space can be described as follows.

𝐶𝑛

(︀
R3
)︀

= Lie
(︀
𝑇𝑛
)︀
⊗ R3 ∖ 𝒮 ,

where the R3-factor contains the coordinates of the points, the factor Lie
(︀
𝑇𝑛
)︀

accounts for the 𝑛 points, and 𝒮 is the union of codimension-3 linear subspaces

𝒮𝛼, where 𝒮𝛼 is the kernel of the linear map (the root map)

𝛼⊗ idR3 : Lie
(︀
𝑇𝑛
)︀
⊗ R3 → R3

extending the roots 𝛼 of 𝑈(𝑛), accounting for the fact that the 𝑛 points are

required to be distinct. (The roots of 𝑈(𝑛) are formed by elements 𝑥𝑖 − 𝑥𝑗 . Note

that Lie
(︀
𝑇𝑛
)︀

is the Cartan subalgebra of u(𝑛).)

This leads us to a generalisation of our conjectures. Let 𝐺 be a compact Lie

group (e.g. 𝑆𝑂(𝑛;R)) and 𝐺C its complexification (e.g. 𝑆𝑂(𝑛;C)). Let 𝑇 ≤ 𝐺 be

a maximal torus with complexification 𝑇C, and let 𝑊 := 𝑁(𝑇 )
⧸︀
𝑇 be the Weyl

group of 𝐺, which permutes the roots.

Conjecture 1.8.1 (Lie group conjecture). If 𝐺 is a Lie group as above with rank

𝑛, then there exists a continuous map

𝑓𝑛 : Lie(𝑇 ) ⊗ R3 = 𝒮 → 𝐺C
𝑇C

→ 𝐺

𝑇

compatible with the action of the Weyl group 𝑊 .

In a joint paper with Roger Bielawski ([2]) we used Nahm’s equations

𝑑𝐴1

𝑑𝑡
= [𝐴2, 𝐴3] (and cyclic permutations),

where 𝐴𝑖 : (0,∞) → Lie(𝐺) are functions of 𝑡 subject to suitable boundary condi-

tions 𝑡 → 0, 𝑡 → ∞, to prove the existence of a map to 𝐺
⧸︀
𝑇 . Problems:

11
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1. For 𝐺 = 𝑈(𝑛), is this the same as a map given by polynomials?

2. Is there an explicit algebraic analogue for a map to 𝐺C
⧸︀
𝑇C?.

3. Is there any generalisation of the hyperbolic conjecture from 𝐺𝐿(𝑛;C) to

other Lie groups?

1.9 Mysterious links with physics

∙ Origin in Berry-Robbins on spin statistics.

∙ Link to Dirac equation?

∙ Generalisation to Minkowski space.

∙ Nahm’s equations and gauge theory.

∙ Link to Hawking-Gibbons metric?

∙ Twistor interpretation?

Key fact of physics. The base of the light cone is CP1. It is Penrose’s

philosophy that this must be the origin of complex numbers in quantum theory, and

it must lie behind any unification of General Relativity and Quantum Mechanics.

What is the physical meaning of our conjectures?

List of conjectures

∙ Conjecture 1.3.1: The Euclidean conjecture (weak and strong).

∙ Conjecture 1.5.1: The hyperbolic conjecture (weak and strong).

∙ The monotonicity conjecture for the normalised determinant.

∙ Conjecture 1.6.1: The Minkowski space conjecture.

∙ Conjecture 1.8.1: The Lie group conjecture.

12
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lecture series 2

Vector bundles over algebraic curves and

counting rational points

February 9, 16, 23 and March 2, 2009

2.1 Introduction

There are two themes, both initiated by A. Weil:

1. Extension of classical ideas in algebraic geometry, number theory, physics

from Abelian (scalars, 𝑈(1)) to non-Abelian (matrices, 𝑈(𝑛)) settings.

2. Connection between homology and counting rational points over finite fields.

2.2 Review of classical theory

(Abel, Jacobi, Riemann, . . . ) Consider complex projective space

CP𝑛−1 ≡ P𝑛−1 := (C𝑛 ∖ {0})
⧸︀
C×

with homogeneous coordinates [𝑧1 : . . . : 𝑧𝑛]. Rational functions on P𝑛−1 are

fractions 𝑓(𝑧1, . . . , 𝑧𝑛)
⧸︀
𝑔(𝑧1, . . . , 𝑧𝑛), where 𝑓 and 𝑔 are homogeneous polynomials

of the same degree.

Note that a meromorphic function on P𝑛−1 is determined up to scale by its

zeros and poles (Liouville). On projective space, global complex analysis is just

algebraic geometry (Serre).

There is the standard line bundle 𝐿 over P𝑛−1, i.e. 𝐿 ∼= 𝒪P𝑛−1(1). Holomorphic

sections of its 𝑘th power 𝐿𝑘 = 𝐿⊗ 𝐿⊗ · · · ⊗ 𝐿 are just homogeneous polynomials

of degree 𝑘.

14
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Algebraic curves. Let 𝑛 = 3, so we consider the projective plane P2. A curve

of degree 𝑘 is given as the locus of points 𝑧 such that 𝑓(𝑧1, 𝑧2, 𝑧3) = 0, where 𝑓

is a homogeneous polynomial of degree 𝑘. Non-singular curves are just compact

Riemann surfaces, so topologically they are entirely determined by its genus 𝑔. A

Riemann surface 𝑋 of genus 𝑔 has first Betti number 𝑏1 = dim𝐻1(𝑋;Q) = 2𝑔.

If 𝑋 is a curve of degree 𝑘 with double points, then removing these double

points leaves a Riemann surface. We have a formula

𝑔 =
1

2
(𝑘 − 1)(𝑘 − 2) − 𝛿 ,

where 𝛿 is the number of double points. If 𝛿 = 0, then for 𝑘 = 1, 2 we find that 𝑋

is a rational curve, i.e. 𝑔 = 0; and for 𝑘 = 3 we get an elliptic curve with genus

𝑔 = 1.

Another interpretation is that 𝑔 is the dimension of the space of holomorphic

differentials (which look locally like 𝜑(𝑧) 𝑑𝑧, where 𝜑 is holomorphic). When 𝑔 = 0,

the curve is the Riemann sphere CP1 = C ∪ {∞}, and the differential 𝑑𝑧 has a

pole at infinity, so it is not holomorphic. When 𝑔 = 1, the curve is the torus C
⧸︀
Z2,

so the differential 𝑑𝑧 on C descends to a holomorphic differential on 𝑋.

Period matrices. Let 𝜔1, . . . , 𝜔𝑔 ∈ 𝐻1(𝑋;C) be a basis of holomorphic differ-

entials and 𝛼1, . . . , 𝛼2𝑔 ∈ 𝐻1(𝑋;Z) a basis for the 1-cycles of a genus-𝑔 curve 𝑋.

The (𝑔 × 2𝑔)-matrix with entries
∫︀
𝛼𝑗

𝜔𝑖 is called the period matrix of 𝑋.

Divisors. We call a subvariety of codimension 1 a divisor. Since curves are

1-dimensional, divisors on curves are just points. The free Abelian group of all

divisors of a variety 𝑋 is denoted by Div(𝑋), and so if 𝑋 is a curve, elements

of Div(𝑋) are just formal sums 𝐷 =
∑︀𝑁

𝑖=1 𝑛𝑖𝑃𝑖, where 𝑃𝑖 ∈ 𝑋 are points. The

degree of such a divisor 𝐷 on a curve is defined as deg𝐷 :=
∑︀𝑁

𝑖=1 𝑛𝑖.

Jacobians. The Jacobian of 𝑋, written 𝐽(𝑋), is a complex torus of complex

dimension 𝑔, given as

𝐽(𝑋) = C𝑔
⧸︀

lattice = hol. differentials
⧸︀

differentials with integer periods .

15
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The significance of the Jacobian lies in the following observation. Let 𝜑 be a

rational (meromorphic) function on 𝑋, and define the divisors

𝐷0(𝜑) := set of zeros of 𝜑, with multiplicities,

𝐷∞(𝜑) := set of poles of 𝜑, with multiplicities,

𝐷(𝜑) := 𝐷0(𝜑) −𝐷∞(𝜑) (the divisor of 𝜑).

Then deg𝐷0(𝜑) = deg𝐷∞(𝜑). This motivates the question for the converse: Given

two divisors 𝐷1 and 𝐷2 of the same degree, when does there exist a function 𝜑 on

𝑋 with 𝐷0(𝜑) = 𝐷1 and 𝐷∞(𝜑) = 𝐷2?

This is always true for 𝑔 = 0, but not otherwise. The “gap” between divisors

of degree zero and divisors of meromorphic functions is measured precisely by the

divisor class group Cl(𝑋). The degree-0 part of it is

Cl0(𝑋) :=
divisors of degree 0

divisors of functions
.

(Divisors of the form 𝐷 = 𝐷(𝜑) are also called principal divisors.) For 𝑔 = 0, the

group Div0(𝑋) is trivial, but for 𝑔 = 1, the divisor class group is precisely the

Jacobian (or its dual) – this is the content of the Abel-Jacobi Theorem. Moreover,

the group Cl0(𝑋) is the group of isomorphism classes of holomorphic line bundles

of degree 0, which are just given by elements of

Hom
(︀
𝜋1(𝑋), 𝑈(1)

)︀
(up to duality and complex structure). Differential geometry shows that a holo-

morphic line bundle of degree zero (i.e. first Chern class zero) has a unique flat

unitary connection.

This is the beginning of the link with physics. Maxwell’s equations deal with the

curvature of a line bundle on space-time.

16
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2.3 Analogy with number theory

Number theory Algebraic geometry

Ring of integers Z complex (affine) line, the ring C[𝑧]

primes points

factorisation of integers factorisation of polynomials

“infinite prime” point at infinity in P1

algebraic number field algebraic curve (covering of a line)

lack of unique factorisation not all divisors come from functions

ideal class group divisor class group

Galois group 𝜋1(𝑋)

The classical analogy is that between the ring of integers in number theory and

the polynomial rings in geometry. A “half-way house” is an algebraic curve over

a finite field. A finite field is a field F𝑞 with 𝑞 elements, where 𝑞 = 𝑝𝑛 for some

prime 𝑝.

We have “function field analogues” of geometric statements, e.g. a Riemann

hypothesis (which is proved for finite fields; also for algebraic varieties of any

dimension).

The key fact for algebraic geometry over F𝑞 is the existence of the Frobenius

map 𝑥 ↦→ 𝑥𝑞. (Recall that in characteristic 𝑝, (𝑥 + 𝑦)𝑝 = 𝑥𝑝 + 𝑦𝑝.) There is no

such analogue in characteristic zero (but physics suggest rescaling the metric1).

2.4 Relation between homology and counting rational points

Definition 2.4.1 (Poincaré series). For any topological space 𝑋 whose singular

homology groups 𝐻𝑘

(︀
𝑋;Q

)︀
are finite-dimensional vector spaces, we define the

Poincaré series of 𝑋 to be the formal power series

𝑃𝑋(𝑡) :=
∞∑︁
𝑘=0

dim𝐻𝑘(𝑋;Q) 𝑡𝑘 .

Proposition 2.4.2. If 𝑋 is a manifold or homotopy-equivalent to a manifold,

then 𝑃𝑋 is in fact a polynomial.

1A quick explanation of this remark is in order: In differential geometry, a differential form
scales with the power of its degree, so rescaling picks out the degree of the form. In characteristic
𝑝, the eigenvalues of the Frobenius map pick out the dimension of the cohomology.
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Example. Consider the space P𝑛−1. Over C, this has Poincaré series

𝑃 (𝑡) = 1 + 𝑡2 + 𝑡4 + · · · + 𝑡2𝑛−2 . (2.1)

Over F𝑞, the number of points in PF𝑛−1
𝑞 is

𝑞𝑛 − 1

𝑞 − 1
= 1 + 𝑞 + 𝑞2 + · · · + 𝑞𝑛−1 .

This agrees with (2.1) if we put 𝑞 = 𝑡2. Note that since we can replace 𝑞 by 𝑞 = 𝑞𝑛,

𝑛 = 1, 2, . . ., we can think of 𝑞 as a variable like 𝑡. This extends to all algebraic

varieties.

Exercise 2.4.3. Check that a similar relation between the Poincaré series over

C and the number of points over a finite field F𝑞 holds for the full flag variety

𝑈(𝑛)
⧸︀
𝑇𝑛. (Hint: Use successive fibrations by projective spaces.)

Generalisation from 𝑈(1) to 𝑈(𝑛). This corresponds to generalising from

line bundles to vector bundles. In number theory, this corresponds to non-Abelian

class field theory. There are representations from the Galois group to 𝑈(𝑛),

Langlands programme. . . In physics, this is related to non-Abelian gauge theories

and Yang-Mills theory.

Returning to algebraic geometry, we will focus on an algebraic curve 𝑋 (either

over C or over F𝑞). The Jacobian is replaced by a “moduli space” of vector bundles

over 𝑋. There are a few difficulties:

∙ There is no group structure (the tensor product does not preserve rank for

ranks > 1).

∙ Bundles of rank 𝑛 can decompose into bundles of lower rank.

There is a moduli space 𝑀𝑠(𝑋,𝑛, 𝑘) of holomorphic rank-𝑛 bundles of degree

𝑘 which are stable. Here 𝑘 is the degree of the determinant line bundle, which

is the first Chern class; in symbols: deg𝐸 := deg Λ𝑛𝐸 ≡ 𝑐1(Λ
𝑛𝐸). The space

𝑀𝑠(𝑋,𝑛, 𝑘) is a compact algebraic variety if gcd(𝑛, 𝑘) = 1, e.g. if 𝑛 = 2, 𝑘 = 1.

For 𝑘 = 0, the space 𝑀𝑠(𝑋,𝑛, 0) is the space of irreducible representations

𝜋1(𝑋) → 𝑈(𝑛). To see this, note that such a representation is a choice of

2𝑔 unitary matrices 𝐴1, . . . , 𝐴𝑔, 𝐵1, . . . , 𝐵𝑔 ∈ 𝑈(𝑛) such that
∏︀𝑔

𝑖=1[𝐴𝑖, 𝐵𝑖] = 1,

modulo conjugation by 𝑈(𝑛).

For a general 𝑘, we replace this condition by
∏︀𝑔

𝑖=1[𝐴𝑖, 𝐵𝑖] = 𝜁 id, where 𝜁 is

a central element of 𝑈(𝑛) and 𝜁𝑘 = 1. (For example, for 𝑛 = 2, 𝑘 = 1, we have∏︀
𝑖[𝐴𝑖, 𝐵𝑖] = − id.)

18
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The general problem is to study 𝑀𝑠.

1. What does 𝑀𝑠 look like topologically?

2. What are its Betti numbers 𝑏𝑖 = dim𝐻𝑖

(︀
𝑀𝑠;Q

)︀
?

For a connected, oriented manifold 𝑋, we have the Poincaré polynomial 𝑃𝑋(𝑡) =∑︀dim𝑋
𝑖=0 = 𝑏𝑖𝑡

𝑖. Note that for any compact manifold 𝑋, we have deg𝑃𝑋 = dim𝑋,

and 𝑃𝑋 is palindromic (by Poincaré duality). Furthermore, 𝑃𝑋×𝑌 (𝑡) = 𝑃𝑋(𝑡)𝑃𝑌 (𝑡).

Example. If 𝑋 is a Riemann surface of genus 𝑔, then 𝑃𝑋(𝑡) = 1 + 2 𝑔 𝑡 + 𝑡2, and

𝑃𝐽(𝑋)(𝑡) = (1 + 𝑡)2𝑔.

What is 𝑃𝑀𝑠(𝑋,𝑛,𝑘)(𝑡)? What is it when gcd(𝑛, 𝑘) = 1? Let us consider the

special case 𝑛 = 2, 𝑘 = 1 on a curve 𝑋 of genus 𝑔(𝑥) = 2. Then

𝑃𝑀𝑠(𝑋,2,1)(𝑡) =
(︀
1 + 𝑡2 + 4𝑡3 + 𝑡4 + 𝑡6

)︀(︀
1 + 𝑡

)︀4
=
(︀
1 + 𝑡2 + 4𝑡3 + 𝑡4 + 𝑡6

)︀
𝑃𝐽(𝑋)(𝑡) .

Note. For 𝑛 = 2 and 𝑔 ≥ 2, we have dimC𝑀𝑠(𝑋, 2, 𝑘) = (3𝑔 − 3) + 𝑔, and

𝑔 = dim 𝐽(𝑋).

Let det : 𝑀𝑠(𝑋,𝑛, 0) → 𝐽(𝑋) be the determinant map 𝐸 ↦→ det𝐸 ≡ Λ𝑛𝐸, and

denote by 𝑀0 the fibre of det over some point. We have a general result.

Theorem 2.4.4 (Formula for general 𝑔 ≥ 2).

𝑃𝑀0(𝑡) =
(1 + 𝑡3)2𝑔

(1 − 𝑡2)(1 − 𝑡4)
− 𝑡2𝑔(1 + 𝑡)2𝑔

(1 − 𝑡2)(1 − 𝑡4)
(2.2)

Exercise 2.4.5. This should be a palindromic polynomial of degree 6𝑔 − 6, all of

whose coefficients are non-negative. Prove this.

Let us write in short 𝑀𝑔(𝑛, 𝑘) for 𝑀𝑠(𝑋,𝑛, 𝑘), the moduli space of stable

vector bundles of rank 𝑛 and degree 𝑘 on a smooth curve 𝑋 of genus 𝑔. What can

we say for 𝑛 ≥ 2? For gcd(𝑛, 𝑘) = 1, 𝑀𝑔(𝑛, 𝑘) is a complex manifold of dimension

(3𝑔 − 3) + 𝑔. Topologically, 𝑀𝑔(𝑛, 𝑘) is given by 𝐴1, . . . , 𝐴𝑔, 𝐵1, . . . , 𝐵𝑔 ∈ 𝑈(𝑛)

such that
∏︀𝑔

𝑖=1[𝐴𝑖, 𝐵𝑖] = 𝜎, where 𝜎 = 𝑒2𝜋𝑖/𝑛, modulo conjugation by 𝑈(𝑛).
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Specific question. What is the homology of 𝑀𝑔(𝑛, 𝑘)? What is its Poincaré

polynomial? Recall:

𝑃𝑀 (𝑡) :=
𝑁∑︁
𝑖=0

dim𝐻 𝑖
(︀
𝑀𝑔(𝑛, 𝑘); Q

)︀
𝑡𝑖

Here 𝑁 = 8𝑔 − 6. For 𝑛 = 1, 𝑃𝑀𝑔(1,𝑘)(𝑡) = (1 + 𝑡)2𝑔, independent of 𝑘.

For 𝑛 = 2, 𝑘 = 1, the moduli space decomposes as 𝑀𝑔(2, 1) = 𝑀0
𝑔 (2, 1)×𝐽(𝑋),

and the Poincaré polynomial of 𝑀0
𝑔 (2, 1) is given by Equation (2.2).

2.5 The approach via Morse theory

2.5.1 Basic Morse theory

Let 𝑌 be an 𝑛-dimensional manifold and 𝑓 : 𝑌 → R a function; the points 𝑥 ∈ 𝑌

where 𝑑𝑓(𝑥) = 0 are called the critical points of 𝑌 . The Hessian, which we write

briefly as “𝑑2𝑓”, is a quadratic form, and we call 𝑓 a Morse function if 𝑑2𝑓 is

non-degenerate at all critical points of 𝑓 . By the Morse Lemma, there exist near

every critical point 𝑝 local coordinates {𝑥𝑖} in which 𝑓 takes the form

𝑓(𝑝 + 𝑥) = 𝑓(𝑝) − 𝑥21 − 𝑥22 − · · · − 𝑥2𝑟 + 𝑥2𝑟+1 + · · · + 𝑥2𝑛 .

The integer 𝑟 is called the Morse index of the critical point. If 𝑟 = 0, 𝑓 has a

minimum; if 𝑟 = 𝑛, 𝑓 has a maximum, and if 0 < 𝑟 < 𝑛, 𝑓 has a saddle point.

If 𝑓 is a Morse function on 𝑌 , the Morse polynomial is

𝑀𝑌,𝑓 (𝑡) =
∑︁
𝑄

𝑡𝛾(𝑄) ,

the sum over all non-degenerate critical points 𝑄, and 𝛾(𝑄) is the Morse index of

𝑄. It can be shown that

𝑀𝑌,𝑓 (𝑡) ≥ 𝑃𝑌 (𝑡) ,

with equality in “good cases”.

Examples.

∙ Let 𝑌 = 𝑆1 and 𝑓 : 𝑌 → R the height function. Then 𝑀𝑌,𝑓 (𝑡) = 𝑃𝑌 (𝑡) = 1+𝑡;

this is a “good case”.

∙ Let 𝑌 = 𝑆1, but “pinched”, and 𝑓 again the height function. Then 𝑀𝑌,𝑓 (𝑡) =
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2 + 2𝑡, a “bad case”.

∙ Let 𝑌 = 𝑆1 × 𝑆1 be the torus and 𝑓 the height function. Then 𝑀𝑌,𝑓 (𝑡) =

1 + 2𝑡 + 𝑡2 = (1 + 𝑡)2 = 𝑃𝑌 (𝑡), another “good case”.

∙ Let 𝑌 = CP𝑛−1 and

𝑓(𝑧) =

∑︀𝑛
𝑖=1 𝜆𝑖 |𝑧𝑖|2∑︀𝑛
𝑖=1 |𝑧𝑖|

2 with 𝜆1 < · · · < 𝜆𝑛 .

Then the critical points of 𝑓 are 𝑄𝑗 where 𝑧𝑗 = 1 and 𝑧𝑖 = 0 for 𝑖 ̸= 𝑗, with

indices 𝛾(𝑄𝑗) = 2𝑗 − 2. Hence 𝑀𝑌,𝑓 (𝑡) = 1 + 𝑡2 + · · · + 𝑡2𝑛−2 = 𝑃𝑌 (𝑡), and

we have another “good case”.

We generalise the notion of non-degeneracy to allow critical submanifolds.

𝑄 ⊆ 𝑌 is a critical submanifold if 𝑑𝑓 = 0 along 𝑄 and 𝑑2𝑓 is non-degenerate in

normal directions. The Morse index of 𝑄, written again as 𝛾(𝑄), is the number of

linearly independent negative normal directions. Such a function will be called a

Morse-Bott function.

Definition 2.5.1. If 𝑓 : 𝑌 → R is a Morse-Bott function, the Morse polynomial

of 𝑓 is

𝑀𝑌,𝑓 (𝑡) =
∑︁
𝑄

𝑡𝛾(𝑄)𝑃𝑄(𝑡) ,

where the sum is taken over all non-degenerate critical submanifolds 𝑄 ⊂ 𝑌 .

Again we have the Morse inequality 𝑀𝑌,𝑓 (𝑡) ≥ 𝑃𝑌 (𝑡), with equality in good

cases.

Examples.

∙ Let 𝑌 = CP𝑛−1 and

𝑓(𝑧) =

∑︀𝑛
𝑖=1 𝜆𝑖 |𝑧𝑖|2∑︀𝑛
𝑖=1 |𝑧𝑖|

2 with 𝜆1 ≤ · · · ≤ 𝜆𝑛 , 𝜆1 ̸= 𝜆𝑛.

If for example 𝜆1 = 𝜆2 = · · · = 𝜆𝑛−1 < 𝜆𝑛, then 𝑄min = CP𝑛−2 and

𝑄max = {pt.} = [0 : . . . : 0 : 1], and so

𝑀𝑌,𝑓 (𝑡) = 𝑃CP𝑛−2(𝑡) + 𝑡2𝑛−2 = 𝑃𝑌 (𝑡) .
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More generally, if 𝜆1 = · · · = 𝜆𝑟 < 𝜆𝑟+1 < · · ·𝜆𝑛, then

𝑀𝑌,𝑓 (𝑡) = 𝑃CP𝑟−2(𝑡) + 𝑡2𝑟 + · · · + 𝑡2𝑛−2 = 𝑃𝑌 (𝑡) .

∙ Now take 𝑛 = ∞ in the last example. Then 𝑃CP∞(𝑡) = 1 + 𝑡2 + · · · = 1
1−𝑡2

.

But we still have

𝑃CP∞(𝑡) = 𝑃CP𝑟−1(𝑡) + 𝑡2𝑟 + 𝑡2𝑟+2 + · · · ,

so we conclude that 𝑃CP𝑟−1(𝑡) = 1
1−𝑡2

−
∑︀∞

𝑘=𝑟 𝑡
2𝑟.

The last example is the prototype of the method to compute 𝑃𝑄min(𝑡) of some

critical manifold 𝑄min in terms of the (possibly infinite-dimensional) total space

and higher critical points. We will use this method again later to compute the

Poincaré series of the moduli space of 𝑈(2)-bundles over a curve of genus 𝑔.

2.5.2 Equivariant cohomology, or The effect of symmetry

Let 𝐺 be a compact Lie group (for instance 𝑈(1) or 𝑈(𝑛)) and suppose 𝐺 acts on a

manifold 𝑌 . If the action is free, then 𝑌/𝐺 is a manifold and has nice cohomology

and Poincaré series. If the action is not free, 𝑌/𝐺 has singularities. What to do?

Definition 2.5.2 (Equivariant cohomology). We define 𝐻*
𝐺(𝑌 ) := 𝐻*(𝑌𝐺) to be

the 𝐺-equivariant cohomology of 𝑌 , where 𝑌𝐺 is given by the Borel construction

𝑌𝐺 := (𝐸𝐺× 𝑌 )
⧸︀
𝐺 ,

where 𝐸𝐺 is a contractible space with a free 𝐺-action, and the action of 𝐺 on

𝐸𝐺× 𝑌 is 𝑔.(𝑒, 𝑦) = (𝑔.𝑒, 𝑔.𝑦). (In fact, 𝐸𝐺 is the total space of the classifying

fibration 𝐺 →˓ 𝐸𝐺 � 𝐵𝐺.)

Example. Let 𝐺 = 𝑈(1) and 𝐸𝐺 = C∞ ∖ {0} = lim−→
(︀
C𝑁 ∖ {0}

)︀
. Then 𝐵𝐺 :=

𝐸𝐺
⧸︀
𝐺 = CP∞. We compute:

𝐻*
𝐺(pt.) = 𝐻*(︀CP∞)︀ and 𝑃 (𝑡) = 1 + 𝑡2 + · · · =

1

1 − 𝑡2
.

Note that the projection

𝑌𝐺 = (𝐸𝐺× 𝑌 )
⧸︀
𝐺 → 𝐸𝐺

⧸︀
𝐺 =: 𝐵𝐺 ≃ {pt.}𝐺
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gives a homomorphism

𝐻*
𝐺

(︀
{pt.}

)︀
= 𝐻*(︀𝐵𝐺

)︀
−→ 𝐻*

𝐺

(︀
𝑌
)︀

,

which turns 𝐻*
𝐺

(︀
𝑌
)︀

into a graded module over the graded cohomology ring

𝐻*
𝐺(pt.). We saw from the example that for 𝐺 = 𝑈(1), the equivariant cohomology

𝐻*
𝐺(pt.) = 𝐻*(︀CP∞)︀ is a polynomial ring in one variable 𝑢 of degree 2, and we

may take 𝑢 to be the Chern class of the tautological line bundle on CP∞. More

generally, for 𝐺 = 𝑈(𝑛) the equivariant cohomology 𝐻*
𝐺(pt.) = 𝐻*(︀𝐵𝑈(𝑛)

)︀
is a

polynomial ring in 𝑛 variables 𝑢1, . . . , 𝑢𝑛 of degrees 2, 4, . . . , 2𝑛, and again the 𝑢𝑖

may be interpreted as the Chern classes of the tautological 𝑛-plane bundle over

𝐵𝑈(𝑛) = Gr𝑛
(︀
C∞)︀.

Definition 2.5.3. Let 𝑌 be a manifold with an action of a compact Lie group 𝐺

as above. The equivariant Poincaré series of 𝑌 is

𝑃𝐺
𝑌 (𝑡) =

∞∑︁
𝑘=0

dim𝐻𝑘
𝐺

(︀
𝑌
)︀
𝑡𝑘 .

Remark 2.5.4. If the action of 𝐺 on 𝑌 is free, then 𝑌𝐺 ∼= (𝐸𝐺× 𝑌 )
⧸︀
𝐺 ≃ 𝑌

⧸︀
𝐺,

and so 𝑃𝐺
𝑌 (𝑡) = 𝑃𝑌/𝐺(𝑡) is a polynomial. In general, however, 𝑃𝐺

𝑌 (𝑡) is only a

power series which is the expansion of a rational function. If 𝑌 is contractible,

then 𝑌𝐺 ≃ 𝐵𝐺, and so 𝐻*
𝐺

(︀
𝑌
)︀

= 𝐻*(︀𝐵𝐺
)︀
.

Equivariant Morse theory. Suppose 𝐺 acts on 𝑌 and 𝑓 : 𝑌 → R is a 𝐺-

invariant Morse-Bott function, i.e. 𝑓 is a Morse-Bott function and 𝑓(𝑔.𝑦) = 𝑓(𝑦)

for all 𝑔 ∈ 𝐺. If 𝐺 acts freely on 𝑌 , then 𝑓 induces a function 𝑓𝐺 : 𝑌
⧸︀
𝐺 → R, and

we can apply Morse theory to 𝑓𝐺. Otherwise, consider 𝑓 on 𝑌 , but remember the

𝐺-action and use 𝐻𝐺, that is, consider 𝑓 as a Morse function on 𝑌𝐺.

Example. Let 𝑌 = 𝑆2 and 𝐺 = 𝑈(1), acting by a simple rotation with two fixed

points, and let 𝑓 be the height function. Then

𝑀𝐺
𝑌,𝑓 (𝑡) =

1

1 − 𝑡2⏟  ⏞  
min.

+
𝑡2

1 − 𝑡2⏟  ⏞  
max

=
1 + 𝑡2

1 − 𝑡2
.

This is a “good case”, since we also have 𝑃𝐺
𝑌 (𝑡) = (1 + 𝑡2)

⧸︀
(1 − 𝑡2).
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Some criteria for a good Morse(-Bott) function. The following conditions

allow us to conclude that a Morse polynomial (or power series) is “good”, i.e. equal

to the Poincaré series.

∙ If all Morse indices and all Betti numbers are even. (E.g. for CP𝑛−1.)

∙ In the equivariant case: If each critical submanifold is point-wise fixed by a

some 𝑈(1) ⊂ 𝐺 which has no fixed vectors in the negative normal bundle.

We will use these criteria in gauge-theoretical computations in the following section.

2.5.3 Application to infinite dimensions (gauge theory)

Let 𝑋 be a surface of genus 𝑔 ≥ 2 and 𝐴 a 𝐺-connection for a vector bundle of

rank 𝑛 over 𝑋, where 𝐺 = 𝑈(𝑛). For the trivial bundle 𝑋 × C𝑛,

𝐴 =

2∑︁
𝑖=1

𝐴𝑖(𝑥) 𝑑𝑥𝑖 ,

where (𝑥1, 𝑥2) are local coordinates on 𝑋 and 𝐴𝑖 ∈ u(𝑛), the Lie algebra of skew-

Hermitian (𝑛×𝑛)-matrices. The curvature of the connection is (locally, or globally

in the case of the trivial bundle)

𝐹𝐴 = 𝑑𝐴 + 𝐴 ∧𝐴 ∈ Ω2
(︀
𝑋; u(𝑛)

)︀
.

The Lie algebra u(𝑛) admits an invariant inner product, so we can define a norm

‖−‖ on it. The Yang-Mills functional of the connection 𝐴 is

𝜑(𝐴) :=

∫︁
𝑋
‖𝐹𝐴‖2𝑑Vol .

The key idea is to apply Morse theory to 𝜑.

1. The function 𝜑 is a function on the infinite-dimensional space 𝒜 of all

connections. This is an affine-linear space, hence contractible.

2. The function 𝜑 is invariant under the infinite-dimensional symmetry group

of all bundle automorphisms 𝒢 = Map(𝑋,𝐺), the so-called group of gauge

transformations.

3. Inside 𝒢 we have the subgroup 𝒢0 ⊂ 𝒢 of based maps 𝑋 → 𝐺, which is

the kernel of ev : 𝒢 → 𝐺, the evaluation at a base point 𝑥0 ∈ 𝑋 given by
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ev(𝑓) = 𝑓(𝑥0). That is, 𝒢0 consists of all those gauge transformations which

are the identity at 𝑥0.

The restricted group 𝒢0 acts freely on 𝒜, and so we can reduce to a 𝐺-action

on 𝒜
⧸︀
𝒢0. Moreover, 𝒢-equivariant cohomology on 𝒜 becomes 𝐺-equivariant

cohomology on 𝒜
⧸︀
𝒢0.

4. We will apply 𝒢-equivariant Morse theory to the Yang-Mills functional 𝜑 on

the space 𝒜.

The critical connections for 𝜑 are the those for which the curvature 𝐹𝐴 is

covariantly constant. The absolute minimum appears when 𝐹𝐴 = 0, i.e. when 𝐴 is

flat (or more generally central harmonic). For higher critical points, 𝐴 decomposes.

Example. Let us consider the simplest case, 𝑛 = 2. That is, we consider rank-2

bundles, or 𝑈(2)-bundles, on a Riemann surface 𝑋. The determinant line bundle

det𝐸 of a rank-2 bundle 𝐸 has degree 𝑘 = 𝑐1(𝐸) = 𝑐1(Λ2𝐸), and 𝐸 is topologically

non-trivial whenever 𝑘 ̸= 0. Let us assume 𝑘 = 1; so we are in a different component

of the moduli space than for 𝑘 = 0.

At the absolute minimum, 𝒢 acts freely. The moduli space 𝑀𝑔(2, 1) is a

manifold and contributes 𝑃𝑀𝑔(2,1)(𝑡). At higher critical points, the bundle is a

direct sum of line bundles, 𝐸 ∼= 𝐿1⊕𝐿2, and deg𝐿1 +deg𝐿2 = 1. Assume without

loss of generality that deg𝐿2 > deg𝐿1. Now 𝒢 acts with isotropy subgroup 𝑈(1)

and contributes

𝑃
𝑈(1)
𝐽(𝑋)×𝐽(𝑋) =

(1 + 𝑡)4𝑔

1 − 𝑡2
.

What is the contribution of the total space 𝒜? We know that 𝐻*
𝒢
(︀
𝒜
)︀

=

𝐻*(︀𝐵𝒢
)︀
, but how do we calculate this? Following Atiyah and Bott [4, S2] we

have:

1. 𝐵𝒢 = Map
(︀
𝑋,𝐵𝒢

)︀
.

2. For 𝐺 = 𝑈(1), we have 𝐵𝐺 = CP∞. So

Map
(︀
𝑋,CP∞)︀ = Z×

∏︁
2𝑔

𝑆1 × CP∞ ,

and

𝑃𝐵𝒢(𝑡) = (1 + 𝑡)2𝑔
⧸︀

(1 − 𝑡2) .
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3. For 𝐺 = 𝑈(𝑛), we have 𝑈(𝑛) ∼ 𝑈(1) × 𝑆3 × · · · × 𝑆2𝑛−1, so

𝑃𝐵𝒢(𝑡) =

∏︀𝑛
𝑖=1

(︀
1 + 𝑡2𝑖−1

)︀2𝑔(︁∏︀𝑛−1
𝑖=1

(︀
1 − 𝑡2𝑖

)︀)︁ (︀
1 − 𝑡2𝑛

)︀ . (2.3)

All of these are “good cases”. We finish with a computation to prove Theorem

2.4.4.
𝑡2𝑔(1 + 𝑡)2𝑔

(1 − 𝑡2)(1 − 𝑡4)
=

1

1 − 𝑡2

∞∑︁
𝑖=1

𝑡2𝑔+4𝑖(1 + 𝑡)2𝑔 (2.4)

On the right-hand side we recognise the factors (1−𝑡2)−1 = 𝑃CP∞(𝑡) and (1+𝑡)2𝑔 =

𝑃𝐽(𝑋)(𝑡). We obtain one big equation{︀
minimum

}︀
+
{︀

higher critical points
}︀

=
{︀

total space
}︀

,

where

minimum = 𝑃𝑀0
𝑔 (2,1)

, the series of the space of interest,

higher points = the expression (2.4), and

total space = (1 + 𝑡3)2𝑔
⧸︀

(1 − 𝑡2)(1 − 𝑡4) from Equation (2.3) with 𝑛 = 2,

for the Yang-Mills functional 𝜑 on the space of all connections on 𝑈(2)-bundles

with fixed degree 1. The contribution from the higher critical points is given by

the 𝐿1 ⊕ 𝐿2 (with fixed total degree), which is the origin of the Jacobian factor

𝑃𝐽(𝑋)(𝑡).

Remark 2.5.5. For 𝑛 ≥ 3, even if we only want to deal with the co-prime case

gcd(𝑛, 𝑘) = 1, the inductive step will need a general case (e.g. 𝑛 = 3, 𝑘 = 1

can decompose into 𝐸2 ⊕ 𝐸1 with rk𝐸𝑖 = 𝑖 and deg𝐸2 = 0, deg𝐸1 = 1). But

Morse theory still works to give induction if we use equivariant cohomology and

equivariant Poincaré series. (The Poincaré series 𝑃𝑀 (𝑡) will not be a polynomial).

2.6 Counting rational points

2.6.1 Finite fields

Fields with finitely many elements are either the integers modulo some prime 𝑝,

written F𝑝 := Z
⧸︀
𝑝Z, or some algebraic extension thereof, written F𝑞 with 𝑞 = 𝑝𝑛
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for some 𝑛 ≥ 1. Note that every field is a vector space over its prime subfield F𝑝,

and the characteristic is in each case the prime 𝑝. We can consider an algebraic

variety 𝑉 defined over any field, in particular over F𝑞 – for example by considering

as the defining equations of 𝑉 polynomials with integer coefficients and reducing

modulo 𝑝.

Example (Projective spaces). Let 𝑉 := P
(︀
F𝑛
𝑞

)︀
=
(︀
F𝑛
𝑞 ∖ {0}

)︀⧸︀
F×
𝑞 . The number of

points in 𝑉 is

𝑁𝑞(𝑉 ) =
𝑞𝑛 − 1

𝑞 − 1
= 1 + 𝑞 + 𝑞2 + · · · + 𝑞𝑛−1 .

Observe:

1. Over the field F𝑞𝑚 , the number of points is

𝑁𝑞𝑚(𝑉 ) = 1 + 𝑞𝑚 + 𝑞2𝑚 + · · · + 𝑞𝑚(𝑛−1) ,

so varying 𝑚 determines a polynomial in 𝑞 via 𝑚 ↦→ 𝑁𝑞𝑚(𝑉 ) ∈ Z[𝑞].

2. Setting 𝑞 = 𝑡2 gives the Poincaré polynomial of P(C𝑛) = CP𝑛−1. This

indicates a relation between counting rational points over finite fields and

Betti numbers of complex varieties.

3. Replacing 𝑞 by 𝑞−1 gives

𝑁𝑞(𝑉 ) =
𝑞𝑛(1 − 𝑞−𝑛)

𝑞(1 − 𝑞−1)
= 𝑞𝑛−1

(︀
1 + 𝑞−1 + · · · 𝑞−(𝑛−1)

)︀
,

and

𝑁𝑞(𝑉 )

𝑞𝑛−1
= 1 + 𝑞−1 + 𝑞−2 + · · · + 𝑞−(𝑛−1) (Poincaré Duality).

4. Let 𝑛 → ∞. We get 1
⧸︀(︀

1 − 𝑞−1
)︀
, and putting 𝑞 = 𝑡−2 we get 1

⧸︀(︀
1 − 𝑡2

)︀
=

𝑃CP∞(𝑡).

Zeta functions. The 𝜁-function of an algebraic variety 𝑉 over F𝑞 is

𝑍𝑉 (𝑡) = exp

(︃ ∞∑︁
𝑚=1

𝑁𝑞𝑚(𝑉 )
𝑡𝑚

𝑚

)︃
,

where 𝑁𝑞𝑚(𝑉 ) is the number of points of 𝑉 over the finite field F𝑞𝑚 . We define

further

𝜁𝑉 (𝑠) := 𝑍𝑉 (𝑞−𝑠) ,
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which is the analogue of the Riemann 𝜁-function. Note that |𝑞−𝑠| = 𝑞−ℜ(𝑠). In the

special case where 𝑉 is a single point, 𝑍𝑉 (𝑡) = 1
1−𝑡 .

2.6.2 The Weil conjectures

(The Weil conjectures were proved by A. Grothendieck and P. Deligne.)

Theorem 2.6.1. Let 𝑉 be a non-singular projective algebraic variety over a finite

field F𝑞. Then

1. 𝑍𝑉 (𝑡) is a rational function of 𝑡.

2. If 𝑛 = dim𝑉 , then

𝑍𝑉 (𝑡) =
𝑝1(𝑡) 𝑝3(𝑡) · · · 𝑝2𝑛−1(𝑡)

𝑝0(𝑡) 𝑝2(𝑡) · · · 𝑝2𝑛(𝑡)
,

where each root 𝜔 of 𝑝𝑖 has |𝜔| = 𝑞−𝑖/2.

3. The roots of 𝑝𝑖 are interchanged with the roots of 𝑝2𝑛−𝑖 under the substitution

𝑡 → 1
⧸︀
𝑞𝑛 𝑡.

4. If 𝑉 is the reduction of an algebraic variety over a subfield of C, then the

Betti numbers 𝑏𝑖 of the variety 𝑉 (C) are 𝑏𝑖 = deg 𝑝𝑖.

Remark 2.6.2. Part (2) of Theorem 2.6.1 is the Riemann hypothesis for function

fields. Part (3) is the functional equation for 𝜁(𝑠).

Steps in the proof.

1. Define cohomology groups 𝐻 𝑖
(︀
𝑉
)︀

which are the analogues to 𝐻 𝑖
(︀
𝑉 (C)

)︀
.

(Done by Grothendieck.)

2. Use the Frobenius map 𝜑 : 𝑉 → 𝑉 , 𝑥 ↦→ 𝑥𝑞. This maps preserves both

multiplication and addition. The fixed points of 𝜑𝑚 are the points of 𝑉 (F𝑞𝑚),

and there are 𝑁𝑞𝑚(𝑉 ) of them.

3. Apply the Lefschetz fixed point theorem: The number of fixed points of a

map 𝑓 : 𝑋 → 𝑋 is

dim𝑋∑︁
𝑖=0

(−1)𝑖 tr
(︀
𝑓* : 𝐻 𝑖(𝑋;Z) → 𝐻 𝑖(𝑋;Z)

)︀
.
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Take 𝑋 = 𝑉 , 𝑓 = 𝜑 and 𝐻 𝑖 to be Grothendieck cohomology:

𝑁𝑞𝑚(𝑉 ) =
∑︁
𝑖

tr
(︀
(𝜑𝑚)* : 𝐻 𝑖(𝑉 ) → 𝐻 𝑖(𝑉 )

)︀
=
∑︁
𝑖

(−1)𝑖
∑︁
𝑗

𝜔𝑚
𝑖𝑗 ,

where the 𝜔𝑖𝑗 are the eigenvalues of 𝜑* acting on 𝐻𝑖(𝑉 ).

4. Now compute:

𝑍𝑉 (𝑡) = exp

(︃ ∞∑︁
𝑚=1

𝑁𝑞𝑚(𝑉 )
𝑡𝑚

𝑚

)︃
= exp

(︁∑︁
𝑖

(−1)𝑖
∑︁
𝑗

− log(1 − 𝜔𝑖𝑗 𝑡)
)︁

=
∏︁
𝑖 odd

𝑝𝑖(𝑡)
⧸︀ ∏︁
𝑖 even

𝑝𝑖(𝑡) ,

where 𝑝𝑖(𝑡) =
∏︀

𝑗(1 − 𝜔𝑖𝑗 𝑡). This proves the theorem subject to

5. Poincaré duality, and

6. the Riemann hypothesis: |𝜔𝑖𝑗 | = 𝑞𝑖/2 for all 𝑖, 𝑗 (done by Deligne).

Example. Let 𝑉 = 𝑋𝑔 be an algebraic curve of genus 𝑔. Then

𝑍𝑉 (𝑡) =

∏︀2𝑔
𝑗=1

(︀
1 − 𝜔𝑗𝑡

)︀(︀
1 − 𝑡

)︀(︀
1 − 𝑞𝑡

)︀
and

𝜁𝑉 (𝑠) =

∏︀2𝑔
𝑗=1

(︀
1 − 𝜔𝑗𝑞

−𝑠
)︀(︀

1 − 𝑞−𝑠
)︀(︀

1 − 𝑞−𝑠+1
)︀ .

Example. Let 𝑉 = 𝑀𝑔(𝑛, 𝑘) with gcd(𝑛, 𝑘) = 1 be the moduli of stable vector

bundles over 𝑋𝑔 of rank 𝑛 and degree 𝑘. If we can compute 𝑁𝑞𝑚(𝑉 ) for all 𝑚,

then Theorem 2.6.1 gives the Betti numbers of 𝑉 (C), i.e. the Poincaré polynomial

of 𝑀𝑔(𝑛, 𝑘) over C.

How do we compute the number of points of 𝑀𝑔(𝑛, 𝑘) over F𝑞? We use two

key ideas:

1. All bundles are trivial if we allow poles (of all orders), i.e. if we work with

the field of rational functions on 𝑋𝑔.
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2. The vector space 𝐴 of power series over F𝑞 of the form

∞∑︁
𝑗=0

𝑎𝑗𝑡
𝑗 ∈ F𝑞[[𝑡]] (2.5)

is infinite-dimensional but compact, since it is a product of finite (hence

compact) sets.

The space 𝐴 has a natural measure 𝜇, which is normalised such that 𝜇(𝐴) = 1.

Let 𝐴𝑟 ≤ 𝐴 be the linear subspace of power series of the form (2.5) which satisfy

𝑎0 = 𝑎1 = · · · = 𝑎𝑟−1 = 0. Then the quotient space 𝐴
⧸︀
𝐴𝑟 has 𝑞𝑟 points, so

𝜇(𝐴𝑟) = 𝑞−𝑟.

We define the infinite projective space over F𝑞 to be

P(F∞
𝑞 ) ≡ F𝑞P∞ := (𝐴 ∖ {0})

⧸︀
F×
𝑞 .

Since {0} has measure zero,

𝜇
(︀
F𝑞𝑃

∞)︀ = 𝜇(𝐴)
⧸︀⃒⃒
F×
𝑞

⃒⃒
=

1

𝑞 − 1
.

(Compare this with the Poincaré series 𝑃CP∞(𝑡) = 1
1−𝑡 .)

The way in which we just dealt with infinite dimensions and computed measures

is our inspiration for counting points in moduli spaces over a finite field F𝑞:

Allowing poles and using measures we can compute the number of points as ratios

of measures.

Example. The group of isomorphism classes of line bundles over 𝑋𝑔 is isomorphic

to the divisor class group Cl(𝑋𝑔) of 𝑋𝑔, which is

Cl(𝑋𝑔) := Div(𝑋𝑔)
⧸︀(︀

𝐷 ∼ 𝐷 + (𝑓)
)︀

.

A divisor 𝐷 is a formal finite sum 𝐷 =
∑︀

𝑗 𝑘𝑗𝑄𝑗 , where the 𝑄𝑗 ∈ 𝑋𝑔 are points

and 𝑘𝑗 ∈ Z. Now pick a local coordinate 𝑢 near a point 𝑄 and let 𝑓 be a local

power series

𝑓(𝑢) =

∞∑︁
𝑘=−𝑁

𝑎𝑘 𝑢
𝑘 , with 𝑎−𝑁 ̸= 0 .

Multiplication by elements of a compact group 𝒦𝑄 reduces this to 𝑓(𝑢) = 𝑢−𝑁 .

(The group is the group of holomorphic power series around 𝑄 with non-vanishing

constant term, i.e. the invertible elements.) So the group Div(𝑋𝑔) of all divisors
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on 𝑋𝑔(F𝑞) is

Div(𝑋𝑔) =
∏︁
𝑥∈𝑋𝑔

𝒦𝑥∖𝒜𝑥 = 𝒦∖𝒜 ,

and the group of divisor classes of degree 0, written Cl0(𝑋𝑔), is

Cl0(𝑋𝑔) = 𝒦∖𝒜/𝐾× ,

where 𝐾 = 𝐾(𝑋𝑔) is the function field of 𝑋𝑔. The measure 𝜇
(︀
𝒜/𝐾×)︀ is finite,

and counting points gives the answer 𝑞2𝑔.

Bundles of higher rank. To study the moduli space 𝑀𝑔(𝑛, 𝑘) for 𝑛 > 1, i.e.

the moduli space of bundles of higher rank, we can use the same method, provided

we fix the determinant. We have

1

𝜇(𝒦)
= (𝑞 − 1)

∑︁
𝐸

1

|Aut(𝐸)|
,

where 𝜇 is the Tamagawa measure (with 𝑐 = 1). We have further

1

𝜇(𝒦)
= 𝑞(𝑛

2−1)(𝑔−1)𝜁𝑋𝑔(2) · · · 𝜁𝑋𝑔(𝑛) .

In particular, for 𝑛 = 2 and 𝑘 = 1 the sum over all bundles 𝐸 splits into a sum

over stable bundles and a sum over unstable bundles, where for a stable bundle 𝐸

we have Aut(𝐸) = {1}. Therefore

∑︁
𝐸

1

|Aut(𝐸)|
=
⃒⃒
𝑀0

𝑔 (2, 1)
⃒⃒

+
∞∑︁
𝑟=1

1

|Aut(𝐸)|
,

where the last sum is a geometric series running over all bundles 𝐸 = 𝐿𝑟 ⊕ 𝐿1−𝑟

and extensions. This gives an explicit formula for
⃒⃒
𝑀0

𝑔 (2, 1)
⃒⃒
, and hence by the

Weil conjectures for 𝑃𝑀𝑔(2,1)(𝑡).

Computing measures. Let 𝛼 run over all points of 𝑀0
𝑔 (𝑛, 𝑘), i.e. orbits of 𝒦

acting on 𝒜*⧸︀𝐾×. Then∑︁
𝛼

𝜇
(︀
𝒦
⧸︀
𝐾𝛼

)︀
= 𝜇

(︀
𝒜*⧸︀𝐾×)︀ = 𝐶 ,

or ∑︁
𝛼

1

|𝒦𝛼|
=

𝐶

𝜇(𝒦)
.
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The only automorphisms of line bundles are scalars, so |𝒦𝛼| = 𝑞 − 1. Also,

∑︁
𝛼

1

|𝒦𝛼|
=

|𝐽(𝑋𝑔)|
𝑞 − 1

.

We need to know the value of 𝐶 and 𝜇(𝒦). Both depend on the precise normalisa-

tion of 𝜇. If we choose 𝐶 = 1, then we get 1
⧸︀
𝜇(𝒦) = |𝐽(𝑋𝑔)|.

2.7 Comparison of equivariant Morse theory and counting rational

points

We obtain the same formula for 𝑃𝑀 (𝑡) and agreement term by term in the method

of the proof. This also works for all 𝑛, 𝑘 and other groups than 𝑈(𝑛). The key

points are the following:

∙ The total space is “trivial”: The space of connections is affine-linear, hence

contractible, and the Tamagawa measure of 𝑆𝐿(𝑛;C) is 1.

∙ Let 𝐼 be the isotropy group. We can compute 𝑃𝐵𝐼(𝑡) and divide by 𝜇(𝐼).

With 𝒢 = Map
(︀
𝑋𝑔, 𝑈(𝑛)

)︀ ∼= 𝒦,

𝑃𝐵𝒢(𝑡) =
𝑛∏︁

𝑘=1

(1 + 𝑡2𝑘−1)2𝑔
⧸︁

(1 − 𝑡2𝑛)
𝑛−1∏︁
𝑘=1

(1 − 𝑡2𝑘)2 ,

and
1

𝜇(𝒦)
= 𝑞(𝑛

2−1)(𝑔−1)𝜁𝑋𝑔(2) · · · 𝜁𝑋𝑔(𝑛) .

These agree using the formula

𝜁𝑋𝑔(𝑠) =

2𝑔∏︁
𝑖=1

(1 − 𝜔𝑖𝑞
−𝑠)
⧸︀

(1 − 𝑞−𝑠)(1 − 𝑞1−𝑠) .

Questions.

1. Why do these two formulae agree? (“Quantum analogue of the Weil conjec-

tures”)

2. Is there an extension of the Weil conjectures to infinite dimensions?
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3. Is computing measures on adèlic spaces analogous to Feynman integration

in gauge theories?

2.8 Relation to physics

Does physics help us understand the questions we raised in the last section? Is

there a relation to the original 𝜁-function? (This leads to arithmetic algebraic

geometry (Arakelov theory) and further speculations.)

The Yang-Mills functional came from physics over 4-dimensional space-time.

It can be considered formally over a compact Riemannian manifold 𝑋 of any

dimension 𝑑. In particular,

∙ if 𝑑 = 2, 𝑋 is a Riemann surface and we have many results about moduli

spaces;

∙ if 𝑑 = 4 we have Donaldson theory.

Quantum field theory.

1. Hamiltonian approach: Consider space and time separately. We have a

Hilbert space ℋ of states, and a self-adjoint “Hamiltonian” operator 𝐻

acting on ℋ. The evolution is given by the unitary operator 𝑒𝑖𝑡𝐻 on ℋ.

2. Lagrangian formulation (relativistically invariant): Let 𝐿 be a functional on

some space of functions 𝑓 on space-time, e.g. 𝐿(𝑓) =
∫︀
|∇𝑓 |2.

3. The Feynman integral is
∫︀

exp
(︀
𝑖
~𝐿(𝑓)

)︀
, integrated over all functions 𝑓 on

R3 × [0, 𝜏 ] with 𝑓(0) = 𝑢 and 𝑓(𝜏) = 𝑣, determines the value
⟨︀
𝑢, 𝑒𝑖𝜏𝐻𝑣

⟩︀
.

This relates to the Hamiltonian approach. (Recall that the Lagrangian and

Hamiltonian are related via the Legendre transform.)

Topological quantum field theories. For some special Lagrangians, we get

𝐻 = 0, and so time evolution is just the identity. In this case, the Feynman integrals

give topological information, and we call these cases topological quantum field

theories. There are many interesting examples of topological QFTs in dimensions

2, 3 and 4.

In four dimensions, we get Donaldson theory and Seiberg-Witten theory, but

these have no parameters.
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In three dimensions, we get Chern-Simons theory, which does have an interesting

parameter. Let 𝐴 be a 𝐺-connection over 𝑋, where 𝐺 = 𝑈(𝑛). Let

𝐿 = 𝐶𝑆(𝐴) =
2𝜋

𝑘

∫︁
𝑋

tr
(︀
𝐴 ∧ 𝑑𝐴 +

2

3
𝐴 ∧𝐴 ∧𝐴

)︀
.

The Hilbert space is the space of holomorphic sections of a line bundle 𝐿𝑘

over 𝑀𝑛(𝑋𝑔), where 𝑋𝑔 is a Riemann surface. (This three-dimensional theory is

related to two-dimensional conformal field theory.) We get topological invariants

of 3-manifolds and knots inside them (Jones, Witten).

In two dimensions, there is also a Yang-Mills theory with Lagrangian 𝐿(𝐴) =

‖𝐹𝐴‖2 =
∫︀
𝑋𝑔

|𝐹𝐴|2. (This is the function on the space of connections to which we

applied equivariant Morse theory.) This theory is physical and not just topological,

but we can solve it exactly. A coupling constant 𝜖 is introduced and the Feynman

integral is formally

𝑍(𝜖) =
1

vol(𝒢)

∫︁
𝒜

exp
(︁
− 1

2𝜖
‖𝐹𝐴‖2

)︁
𝑑𝐴 .

This has a non-trivial dependence on 𝜖 and can be used to compute the multiplica-

tive structure on the cohomology ring 𝐻*(︀𝑀(𝑋𝑔, 𝑛)
)︀

(Witten).

This quantum field theory looks promising, but does not give the Poincaré series

of 𝑀(𝑋𝑔, 𝑛). Question: Is there an analogue over a finite field (where the Frobenius

map is related to scaling 𝜖)? Another possibility is to use a (super-symmetric)

variant of Chern-Simons theory for a 3-manifold 𝑆1 × 𝑋𝑔 (or more generally a

circle bundle or a Seifert fibration). The Hilbert space is Ω*(︀𝑀(𝑋𝑔, 𝑛)
)︀
, the space

of all differential forms on 𝑀(𝑋𝑔, 𝑛), which comes equipped with a differential 𝑑

and its adjoint (with respect to the symplectic structure) 𝑑*. However, this seems

to involve integration for functions on 𝑆1 ×𝑋𝑔, while we want just functions on

𝑋𝑔 (for the analogy with finite fields).

A possible idea is contained in Witten-Beasley for another theory of Chern-

Simons type, where integration is reduced to 𝑋𝑔 ⊂ 𝑆1 ×𝑋𝑔 as the fixed-point set

of a symmetry.

2.9 Finite-dimensional approximations

We can use approximations to link topology with finite fields and then pass to a

limit. Let us consider approximations to 𝐵𝐺.

34



Edinburgh Lectures on Geometry, Analysis and Physics 35

For 𝐺 = 𝑈(𝑛),

𝐵𝐺 = lim−→
𝑁→∞

𝑈(𝑁)

𝑈(𝑛) × 𝑈(𝑁 − 𝑛)
= lim−→

𝑁→∞
Gr𝑛(C𝑁 ) = Gr𝑛(C∞) .

For maps 𝑓 : 𝑋𝑔 → 𝐵𝐺, fix a degree deg(𝑓) = 𝑚 (and then let 𝑚 → ∞). For

fixed 𝑁 , 𝑚, the space of holomorphic maps 𝑓 : 𝑋𝑔 → Gr𝑛(C𝑁 ) of degree 𝑚 forms

a finite-dimensional algebraic variety 𝑉 (𝑁,𝑚).

The idea of finite-dimensional approximations is the following: Holomorphic

maps are determined by their behaviour at “poles”, and the Graßmannians 𝐺𝑟𝑛

can be embedded in projective space. We can study whether continuous maps can

be approximated by holomorphic maps, apply the Weil conjectures to 𝑉 (𝑁,𝑚)

and take limits.

This is a reasonable programme.

2.10 Relation of 𝜁-functions for finite fields and Riemann’s 𝜁-function

The original Riemann 𝜁-function is

𝜁(𝑠) =

∞∑︁
𝑛=1

1

𝑛𝑠
=

∑︁
𝑝 prime

(︁
1 − 1

𝑝𝑠

)︁−1
,

where the last expression is also known as the Euler product, whose factors are

so-called local factors. (They are called thus with reference to the closed points

(𝑝) of the scheme Spec(Z).) The 𝜁-function ostensibly contains information about

the set of primes.

Now let 𝑉 be an algebraic variety over a finite field F𝑝. We want to define a

𝜁-function for 𝑉 . If 𝑉 = {*} = Spec(F𝑝) is a single point, let

𝜁𝑉 (𝑠) :=
(︀
1 − 𝑝−𝑠

)︀−1
.

In general, if 𝑉 is any variety defined over Z, we define

𝜁𝑉 (𝑠) :=
∏︁
𝑝

𝜁𝑉𝑝(𝑠) ,

where 𝑉𝑝 is the reduction of 𝑉 modulo 𝑝. We need to look out for special “bad”

primes and add a term for the “infinite prime” (arising in valuation theory).

By the Weil conjectures, 𝜁𝑉𝑝(𝑠) is given by a rational function of 𝑡 = 𝑝−𝑠 in

terms of the Frobenius action on cohomology.
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Example. Let 𝑉 be an elliptic curve (i.e. of genus 1) defined over Z. The Weil

formula gives

𝑍(𝑡) =
(1 − 𝛼𝑡)(1 − 𝛽𝑡)

(1 − 𝑡)(1 − 𝑝𝑡)
,

where 𝛼, 𝛽 are eigenvalues of the Frobenius map 𝜑 on 𝐻1, and further we have

|𝛼| = |𝛽| = 𝑝−1/2, 𝛽 = 𝛼−1 and 𝛼 + 𝛽 = 𝑎 = tr
(︀
𝜑*|𝐻1(𝑉 )

)︀
. Put

𝐿𝑝(𝑠) =
(︁

numerator of 𝑍(𝑡) with 𝑡 = 𝑝−𝑠
)︁

= 1 − 𝑎𝑝𝑝
−𝑠 + 𝑝1−2𝑠 ,

and

𝐿𝑉 (𝑠) = 𝑐.
∏︁
𝑝

𝐿𝑝(𝑠) .

Theorem 2.10.1 (Hasse-Weil Conjecture). With 𝑉 as above and with suitable

choices for the infinite prime and for bad primes, the function 𝐿𝑝(𝑠) extends

holomorphically to all 𝑠 ∈ C, and 𝐿𝑉 (𝑠) = ±𝐿𝑉 (2𝑠).

The Hasse-Weil Conjecture has now been proved by Wiles, Taylor and others.

Similar conjectures exist for all 𝑉 and all 𝐻 𝑖. (There is one 𝐿-function for each 𝑖.)

Remark 2.10.2 (The adèlic picture for Q or number fields). This is a comment

on the double coset space 𝒦∖𝐺𝐴/𝐺𝐾 used for an algebraic curve over F𝑝. For Q
or Z and for 𝑆𝐿(2) we have 𝑆𝑂(2;R)∖𝑆𝐿(2;R), which is the upper-half plane (or

hyperbolic plane). The double coset space is

ℳ :== 𝑆𝑂(2;R)∖𝑆𝐿(2;R)/𝑆𝐿(2;Z) ,

the moduli space of elliptic curves. To compute the area of ℳ. we start with

𝑆𝐿(2;R)/𝑆𝐿(2;Z), which is a three-dimensional manifold with an invariant volume

form. We decompose it into 𝑆𝑂(2;R)-orbits and integrate.

2.11 Arithmetic algebraic geometry (Arakelov theory)

Suppose we have an algebraic variety 𝑉 of dimension 𝑑 defined over the integers Z.

We can either embed Z into C and consider 𝑉 (C) as a complex variety, or we can

form the residues Z → Z
⧸︀
𝑝 and get a corresponding variety 𝑉𝑝. So in fact we get a

family 𝑉𝑝 over the primes in Z, and we include 𝑉∞ sitting over the infinite prime.

This family, a scheme over SpecZ, is an algebraic variety of dimension 𝑑 + 1. If

𝑑 = 0 we get a number field, if 𝑑 = 1 we get a so-called arithmetic surface.
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“In the big picture, physics is at infinity, and number theory at the finite

points.”

We may try to extend theorems from surfaces to their arithmetic analogues.

Non-Abelian theories. For 𝑑 = 0 and 𝐺 = 𝑆𝐿(𝑛), we have the Langlands

programme, also known as non-Abelian class-field theory. For 𝑑 = 1 we study

the local theory at 𝑝. For 𝑝 = ∞, we have the geometric Langlands programme,

which has been related by Witten to quantum field theories over 𝑉 (C). What is

the ultimate goal? Perhaps quantum field theories over arithmetic varieties? One

would start with the case 𝑑 = 1.

2.12 Other questions

Can we extend our results from curves to varieties of higher dimensions? Recall

that for a curve 𝑋𝑔 and gauge group 𝐺 = 𝑆𝑈(𝑛), we know the Poincaré series

𝑃Map(𝑋𝑔 ,𝐵𝐺)(𝑡) =

𝑛∏︁
𝑘=1

(1 + 𝑡2𝑘−1)2𝑔
⧸︁

(1 − 𝑡2𝑛)

𝑛−1∏︁
𝑘=1

(1 − 𝑡2𝑘)2 .

Over F𝑞,

vol(𝒦)−1 = 𝑞(𝑛
2−1)(𝑔−1)𝜁𝑋𝑔(2) · · · 𝜁𝑋𝑔(𝑛) ,

where

𝜁𝑋𝑔(𝑠) =

2𝑔∏︁
𝑖=1

(1 − 𝜔𝑖𝑞
−𝑠)
⧸︀

(1 − 𝑞−𝑠)(1 − 𝑞1−𝑠)

and 𝒦 is the maximal compact subgroup of 𝐺𝐴𝑋
. Both formulae extend from

curves to varieties 𝑉 of all dimensions and still appear to be closely related. We

may study, for example, bundles over

∙ P2,

∙ (P2,P1),

∙ P1 ×𝑋𝑔 (here Morse theory is trickier),

∙ 𝑋𝑔 with gauge group Ω(𝐺), this is related to the previous point,

∙ and also Weil theory for some infinite-dimensional cases.
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